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Ground State of a 2D Antiferromagnet on a Square

Lattice

The 2D antiferromagnetic ground state on a squared lattice was extensively studied theoretically
(see Refs.[1]-[4]). It was found that the Heisenberg model

H2D = J
∑

〈ij〉
Si · Sj , (1)

with J > 0 can be mapped onto a quantum nonlinear sigma model (QNLσM). This model can
be solved in the long wave limit. The generic phase diagram is shown in Fig.1. It is consistent
with the Mermin-Wagner theorem [5] in the sense that there is no true long-range order at any
finite temperature T .

Figure 1: Crossover diagram of the QNLσM at d = 2 (see Ref.[1]), t̄ ∝ T .

However, the QNLσM prediction is that for T = 0 and ḡ < 1, where ḡ ∝ 1/ρS, with ρS the spin
stiffness1 there is a Néel state, i.e. true long range order. Moreover, the T > 0 state (ḡ < 1,

1The spin stiffness, ρS, is defined as E(θ) = E(θ = 0) + 1/2ρSθ2, where θ is a small rotation angle. For a
classical Heisenberg model in 2D ρS = JS2 [6]
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called renormalized classical state) shows an exponential growing correlation length ξRC (see
Eq.(3); blue line in Figs.1&2).

The temperature dependence of ξ at the quantum critical point (ḡ = 1) is following a 1/T
behavior (see Eq.(2); green line in Figs.1&2).

Above the quantum critical point ḡ > 1, ξ is finite and pretty much temperature independent
at low enough temperature (see Eq.(4); red line in Figs.1&2).

Correlation Length ξ in the Different Regimes

Correlation length ξ for the quantum critical point ḡ = g/gc = 1:

ξḡ=1 ≈ ~c
kBT

, (2)

whith c the renormalized spin wave velovity.
Correlation length ξ in the renormalized classical regime ḡ < 1 [2]:

ξRC ' 0.5 · a · exp(1/x) · [1− x/2 + O(x2)
]
, (3)

with x = kBT/(1.13J), and a the lattice constant.
Correlation length ξ in the quantum disordered regime ḡ > 1:

ξQD ≈ a
c1

∆ + kBT exp(−4∆/(kBT ))
(4)

where c1 is a constant and ∆ is the gap in the excitation spectrum forming in the quatum
disordered regime.

Figure 2: Inverse correlation length 1/ξ (units in Å) versus T for the QNLσM. Parameters as
for LSCO.

From the µSR point of view, systems with 1/ξ < 0.02 − 0.03 1/Å can show spontaneous
precession signals in zero field if the system doesn’t show much dynamics.

Is anything known experimentally about the temperature dependence of ξ? Of course any
real system like La2CuO4 or Sr2CuO2Cl2 has some additional coupling terms in the spin Hamil-
tonian which will eventually drive the system 3D and hence a phase transition at finite tem-
perature will take place. The transition temperature can be estimated from the self-consistent
equation
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J ′
[
ξ2D(TN)

a

]2

' kBTN (5)

where J ′ is the exchange coupling between neighboring CuO2 planes with J ′/J ' 2 · 10−5.
Since J ′/J is small, it has been argued that ξ(T ) can be sufficiently accurate measured in the
paramagnetic phase of these systems. This has been extensively studied by INS Refs.[7]-[9] and
by NMR/NQR Refs.[10]-[13]. All these measurements consistently find that La2CuO4

is found in the parameter space of the renormalized classical regime, i.e. ḡ < 1.
Fig.3 shows data for La2−xSrxCuO4 measured by INS. First focus on the x = 0 data. They
indeed are well described by ξRC Eq.(3). The parameters found from these measurements are
consistent with the one found by NMR/NQR.

Figure 3: Measured values of 1/ξ versus T (INS [8]).

Now, if the system is going to be doped, the character of ξ(T ) is changed as can be seen in
Fig.3. The x > 0 data look somewhat similar than 1/ξQD(T ) (see Fig.2), however one needs
to be careful here. Doping is adding an additional dimension to the phase diagram of Fig.1. I
haven’t found any quantitative analysis dealing with this problem. However, Keimer et al. ([8],
Fig.3) found experimentally that

ξ−1(x, T ) = ξ−1(x, 0) + ξ−1(0, T ) (6)
ξ−1(x, 0) = a/

√
x.

Gooding and Mailhot [15] modelled this the following way: it is assumed that at low enough
temperature the doped holes localize. This is also what is seen in µSR where a spin freezing is
observed. The quasi localized hole will fluctuate in order to restore the symmetry of the pure
system. This is leading to a long-range coupling between the magnetic system and the charge
impurity.

Random perturbations to the ordered quantum antiferromagnetic ground
state

One questions which needs to be answered is the following: How robust is H2D in respect to any
kind of random perturbations, especially keeping in mind the hole doping? Murthy discussed
this case in Ref.[16], based on the following Hamiltonian:
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H = J
∑

〈ij〉
Si · Sj +

∑

〈ij〉
KijSi · Sj

︸ ︷︷ ︸
(∗)

+
∑

i

hi · Si

︸ ︷︷ ︸
(M)

(7)

with

Kij = 0, KijKkl = σ2
Jδikδjl

h
α

i = 0, hα
i hβ

j = σ2
hδijδαβ .

The term (∗) is a short range random coupling, whereas the (M) originates from a long range
random coupling. He showed that (∗) is leading to a mere renormalization of J and hence the
phase diagram of Fig.1 is still valid. However, (M) in 2D is always a relevant perturbation and
hence will kill long-range order (T = 0). Of course this term is thus also strongly influencing
ξ(T ). Since the charge localization model of Gooding is predicting a long range perturbation
of the magnetic state, this could mimic a term like (M).

Think about our LSCO superlattice (SL) results, this could at least qualitatively explain
the very weak magnetic state for the [3LSCO+6LCO] and [3LSCO+9LCO] samples. When
changing the SL stacking, not only the dimensionality is affected but also the charge level in
the LCO layers.

In order to optimize this kind of SL studies the metallic LSCO layer should be switched to
optimally doped LSCO (LSCOopt). Since the chemical potential difference between LSCOopt

and LCO is very small or even absent, charge transfer effects should be minimal, only leaving
Sr interdiffusion as a source of doping.
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