On the determination of the α parameter in a μ SR experiment

T. Prokscha, PSI

March 30, 2007

Abstract

This article is just a collection of equations leading to Eq. (11) which allows to estimate α .

1 How to estimate α

Assumptions:

- 1. "forward" and "backward" detectors under $\phi = \pi$
- 2. forward and backward decay asymmetries A_F and A_B are the same, $A_F(t) = A_B(t) = A(t)$.
- 3. muon spin pionts initially to forward detector.

The forward and backward histograms $N_F(t)$ and $N_B(t)$ can be written as

$$N_F(t) = N_F^0 \cdot \exp(-t/\tau_\mu) \cdot [1 + A(t)] + b_F$$
 (1)

$$N_B(t) = N_B^0 \cdot \exp(-t/\tau_\mu) \cdot [1 - A(t)] + b_B$$
 (2)

$$\alpha N_F^0 = N_B^0 \tag{3}$$

where $N_{F,B}^0$ are the respective normalizations, τ_{μ} is the lifetime of the muon, and $b_{F,B}$ represent the flat background in each histogram. Rewrite Eqs. (1) and (2):

$$\frac{N_F(t) - b_F}{N_F^0} \cdot \exp(t/\tau_\mu) = 1 + A(t) \tag{4}$$

$$\frac{N_B(t) - b_B}{N_B^0} \cdot \exp(t/\tau_\mu) = 1 - A(t).$$
 (5)

Now, add Eqs. (4) and (5) to obtain

$$FB(t) \equiv \left(\frac{N_F(t) - b_F}{N_E^0} + \frac{N_B(t) - b_B}{N_D^0}\right) \cdot \exp(t/\tau_\mu) = 2.$$
 (6)

Now, we have to determine the background and the normalization factors $N_{F,B}^0$. This can be done by adding Eqs. (1) and (2) to obtain the sum of the forward and backward histograms with $b = b_F + b_B$ the sum of background:

$$N_{F}(t) + N_{B}(t) = N_{F}^{0} \cdot \exp(-t/\tau_{\mu}) \cdot [1 + A(t)] + b_{F}$$

$$+ N_{B}^{0} \cdot \exp(-t/\tau_{\mu}) \cdot [1 - A(t)] + b_{B}$$

$$= (N_{F}^{0} + N_{B}^{0}) \cdot \exp(-t/\tau_{\mu}) + A(N_{F}^{0} - N_{B}^{0}) \cdot \exp(-t/\tau_{\mu}) + b$$

$$= [(N_{F}^{0} + N_{B}^{0}) + A(N_{F}^{0} - N_{B}^{0})] \cdot \exp(-t/\tau_{\mu}) + b$$

$$= (N_{F}^{0} + N_{B}^{0})(1 + A\frac{N_{F}^{0} - N_{B}^{0}}{N_{F}^{0} + N_{B}^{0}}) \cdot \exp(-t/\tau_{\mu}) + b$$

$$= (N_{F}^{0} + N_{B}^{0})\left(1 + A\frac{1 - \alpha}{1 + \alpha}\right) \cdot \exp(-t/\tau_{\mu}) + b$$

$$= N_{F}^{0}(1 + \alpha)\left(1 + A\frac{1 - \alpha}{1 + \alpha}\right) \cdot \exp(-t/\tau_{\mu}) + b$$

$$= N^{0} \cdot \exp(-t/\tau_{\mu}) + b.$$
(8)

Fitting Eq. (8) to the sum histogram yields N^0 and b. The single histogram background can then be obtained using the single detector rates $R_{F,B}$:

$$b_F = b \cdot \frac{R_F}{R_F + R_B} \tag{9}$$

$$b_B = b \cdot \frac{R_B}{R_F + R_B}. (10)$$

Insertion of Eqs. (7) and (8) in Eq. (6) yields the "master" equation for the determination of α :

$$FB(t) = \left[N_F(t) - b_F + \frac{1}{\alpha}(N_B(t) - b_B)\right] \frac{1+\alpha}{N^0} \left(1 + \overline{A}\frac{1-\alpha}{1+\alpha}\right) \exp(t/\tau_\mu) = 2,\tag{11}$$

where \overline{A} is now the averaged asymmetry (A = A(t)!) and can be obtained from the background-corrected forward/backward histograms:

$$\overline{A} \equiv \frac{\alpha N_F - N_B}{\alpha N_F + N_B},\tag{12}$$

where $N_{F,B}$ are the **total** number of muons in each histogram. For LEM top/bottom histograms or TF experiments with fields larger than a few hundred Gauss we can set $A = \overline{A} = 0$.

2 Procedure

Determine FB(t) in Eq. 11 and fit a 0^{th} -order polynom p0 to FB(t). Vary α to obtain p0 as close as possible to 2. Main problem: the procedure for Eq. 11 always gives a result very close to 2. With the typical LEM statistics of a total of 2-3 Mevents in Forward/Backward histograms a fit of Eq. 11 to the data has an error of 0.002 (i.e. the result of a fit may give 2.0005(20)). Therefore, the estimate of α is not straight forward and requires generally additional information, such as decay asymmetry at $t \leq t_0$. On the other hand, the procedure can be used to check the data. For example: a real signal from the sample must always yield FB(t) scattering around 2. In low-energy experiments (E < 3keV, LCCO, spin-glass) I found clear deviations in the first 100 - 200 ns which is usually in the range of strange, fast relaxations. Using the prodecure of Eq. 11 therefore allows to check, at which time $t > t_0$ the signal is free from distortions due to backscattering etc., i.e. the time range where the signal comes from the sample only.

A root macro **getAlpha.C** exists which allows to run the procedure for α estimation. **However**, it requires manual input and "expert" experience in LEM data analysis and is therefore not suited for general use at the moment!

Procedures that worked for different conditions:

- ZF data (Ag sample plate, GaSb:Mn, LCCO):
 - include α in the calculation of \overline{A} as in Eq. (12).
 - for a given α loop over bin sizes and fit FB(t) for each bin widths.
 - depending on stats choose bin widths \in [50, 99] or [100, 199]; it could be possible to change the fit interval as well: [200, 9600] ns, or [200, 11000] ns, [200, 12300] ns.
 - Vary α until mean value \overline{FB} of $FB(t) \sim 2.000000(5)$.
 - with this α check FB(t) and A(t) at $t \sim t_0$.
- TF B_{par}: does not work, because phase difference between L and R detector is less than 180°.
- TF B_{perp}, 100 GTF (ZnO, CdS):
 - Set $\overline{A} = 0$.
 - − loop over bin widths \in [100, 199] ns, fit FB.
 - Search α where $FB_{max} > 2 + \sigma_{\overline{FB}}$, where $\sigma_{\overline{FB}}$ is the square-root of the variance of the fitted FB's.