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Change of the Kapitza resistance as a metal goes from the normal state
to the superconducting state is estimated in the dielectric-metal junction by
extending Little’s theory that the interaction between surface waves and
conduction electrons contributes to heat transfer in the liquid-solid junction.
According to this estimate, no change is expected in the case that sound
velocities of the dielectric are larger than those of the metal. The sapphire-
indium junction is such a case. The Kapitza resistance of this junction
measured by the authors from 0.6°K to 2.2°K shows, however, a small
difference between the nornal and the superconducting states of indium

contrary to the above estimation.

Introduction

§1.

Since Kapitzal discovered the thermal boun-
dary resistance at an interface between He I and
solids, many investigations of this ‘‘ Kapitza
resistance *> have been reported.? According to
Khalatnikov,® transfer of heat from a solid to
helium takes place by the radiation of various
phonons and the Kapitza resistance arises due to
the acoustic mismatch of the two substances.
Little® extended Khalatnikov’s theory to heat
transfer at an interface between any two dissimi-
lar, isotropic solids. In his paper, he pointed
out possibility that conduction electrons could
contribute to heat transfer through the interaction
with surface disturbances caused by totally
reflected sound waves. This interaction is im-
portant when the acoustic velocities are very
different in the two media. This idea was applied
by Little® to the study of the Kapitza resistance
at the interface between helium and a metal,
where a large fraction of the phonons in the
liquid would be totally reflected and the surface
disturbances are created because the velocities of
sound in liquid helium is much smaller than those
in a metal. He expected a difference in the
Kapitza resistance at the interface as a metal goes
from the normal to the superconducting state,
for the phonon-electron interaction necessary for
this mechanism vanishes in the latter state. The
difference was observed by Challis® between
liquid helium and lead in the normal and super-
conducting state. Little calculated heat transfer

* Based on part of a thesis presented to Tokyo
University of Education in partial fulfillment of the
degree of Doctor of Science by one of the authors.
(B.S.P.).

due to this mechanism assuming that only inter-
action between the longitudinal component of
surface waves and conduction electrons is an
important contribution. Challis and Cheeke?
pointed out later that this assumption corres-
ponds to the condition wr»1 where w is the main
phonon frequency and ¢ is the relaxation time of
conduction electrons. Also, Andreev® calculated
the effect of conduction electrons on the Kapitza
resistance under the conditions wr <1 and further-
more g/’»>1 and gl 1 where g is the wave vector
of the sound and [ is the electron mean free path.
When ¢g/»1 he solved the kinetic equation of the
elecron distribution function and showed that
the electron-phonon interaction gives a contribu-
tion to the heat flow at the interface as large as
that of phonon transmission within the critical
angles. To the contrary, when ¢/<1, the con-
duction electrons barely contribute to the heat
transfer.

Challis and Cheeke” examined Little’s and
Andreev’s theories with some numerical evalua-
tions and found that the Andreev’s calculation
could be extended to the region wr3»1 and that
the agreement is essentially obtained with Little’s
calculation when interaction between conduction
electrons and transverse waves is weak.

In this paper, we extended Little’s theory to a
dielectric-metal interface. ~We considered the
contribution of conduction electrons and surface
waves interaction to heat transfer and calculated
it numerically for a certain range of the ratio
of densities of the two media and the ratio of the
velocities of longitudinal waves in two media.
The details are presented in § 2.

Many experimental works have been carried
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out for the Kapitza resistance between liquid
helium and a solid. The results vary for different
surface conditions. Although it is technically
difficult to produce the ideal dielectric-metal
junction, at least we should be able to reduce the
aging effect of the junction, which makes us
easier to compare experimental results with
theory. Neeper and Dillinger® measured the
Kapitza resistance on the sapphire-indium junc-
tion in the temperature range from 1.1°K to
2.1°K and found conduction electrons contribute
little. Very recently Wolfmeyer, Fox and Dil-
linger'® made measurements on sapphire-indium
and sapphire-lead junctions in the wider tempera-
ture range from 0.4 to 4.0°K. They found a
pronounced difference of the Kapitza resistance
between the normal and superconducting states
below 1.5°K. We also made careful measure-
ments of the Kapitza resistance of the sapphire-
indium junction in order to check contribution of
conduction electrons and surface waves interac-
tion in the temperature region between 0.6°K
and 2.2°K. It is important to widen the tem-
perature region of measurements, because as
temperature decreases, less number of quasi-
particles are available, as Little pointed out.

We shall discuss what we expect from our

estimation in §2 with our experimental results

and other group’s results mentioned above.

§2. Theory

In order to solve the problem of the heat trans-
fer by conduction electrons from a dielectric to a
metal, we consider the propagation of the plane
sound waves between these two solids.

Let us suppose (1) two semi-infinite isotropic
solids contact at the plane Z=0, (2) sound waves
can be considered to propagate independently
and to be in the thermal equilibrium.

We devide our problem into two cases, (1) the
longitudinal sound wave, (2) the transverse sound
wave incident from the medium 1 (a dielectrics)
(£>0) to the medium 2 (a metal) (Z£<0), respec-
tively.

Case 1) Incidence of the longitudinal phonon.

The displacement vector of the incident sound
wave may be determined by scalar potential ¢y,
such that

ur=grad ¢r . (1)

Let the incident wave vector ky; lie in the XZ-
plane as shown in Fig. 1. Futhermore let the
angle of incidence of the longitudinal wave be
6, its velocity Cy; and its frequency o.
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We then have
pr=Ao exp {iku(X sin fo—Z cos Oo)—iwt} , (2)
where
ku=w/Cy .
In the medium 1, reflected sound waves are
constituted of transverse wave and longitudinal

wave. Their displacement vector may be written
as

A

9"
8\ | g

Az,

Azt

Fig. 1. The case that the incident wave is longi-
tudinal.

ur=grad pp+rot ¥, (3)

where
or=Ay exp {iku(X sin 0+ Z cos u)—iwt} , (4)
(¥'r)y=A1: exp {ik1:(X sin 01+ Z cos 01:)—iwt} ,
Tr)e=Tr),=0. (5)
where ki:=w/Cis and Ci is the transverse sound
velocity.

In the medium 2, the transmitted phonon may
be also written as

ungrad or-r0t Uy, (6)

where
SDT_—“AZZ exp {lkzz(X sin 62— Z cos (921)—i(¢)1} N ( 7 )
' r)y=Az: exp {iks:(X sin 2;—Z cos 034)—iwt} ,
(8)
Tr)e=T+).=0 .
here ka=w/Ca, ket=w/[Cs, and Cy, Cy are the
longitudinal and transverse sound velocities.
At the boundary plane Z=0, the following
quantities must be continuous.
1) the normal components of the displace-
ment
2) the tangential components of the displace-
ment
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3) the normal components of the stress
4) the tangential components of the stress
The stress tensor o is given by

a5, =20C2U;p+p(C2—2C2)Undir ,  (9)
oU; oUy

Uip=— . 10

- (aXﬁaXi) 1o

We then have the following relations as these
boundary conditions.
sin ﬁlt

Clt

__sin Oy Ay =08 fo
Czt Cll
sin Ccos 14 sin Bz
— A A A
Cu 1+ Cor 1+ C 21
cos Oy sin fo
AO >

— = Asy =
T T

01 €08 201 Ayi+ o1 Sin 261 A1s— ps COS 202, As;
—I—pz sin 202tA2t: —p1 COos 201tA0 )

2
p1< (C::lt > sin 2011A11—p1 COs 261tA1t
11

Cos g1
Az
Ca

AO;

cos 013 Ay

A
Co 1+

(11)

(12)

(13)

Cat \2 .
—|—p2(c— Sin 202[/12!_!_[02 Ccos 202tA2;
21

:‘01(%>2 sin 260114, . (14)
Also, we have one more relationship;
sin 0o: sin 0y _ sin f1¢ — sin Oz _ sin fs; . (15)
Cu Cu Cyit Cy Cas

These equations from (11) to (14) may be solved
easily with the above equation, and for instance,
the amplitudes Az/Ao and Az;/Ay are given by*

Azl 1 2p12 ( C2 )
22 2 201 e _
4 D Zul: T\ g,

L2 o1 P102 | P1P2
x (L2 LL ) 010z P02 16
(Zu Zu) VAT Zu:| a0
Ase 1 291 P102 c?
e A el v 3 C2
A D Zu |:Z1tZzz Cg(‘ol 1t —02C5:)
2s
=) oo C2. —0,C2 ,
+c2t{"2 ci, ("1 e )H
17
where s=sin #s; and D, Zy;, Z1:, Za, and Zy; are
given by
_ 01205 C: C e _p1202%
ZuZywZaZs %z (pz B—mCht ZZlZIt
piPpe® | pit { 2 F
R + C%—p:C
ZuZe: " ZuZo 02 (Pl 1t—02C%;)

* When @ is less than sin—1(Cy;/Cy), the energy
ratio of the transmitted longitudinal and transverse
sound waves to the incident wave are given by

(Aw.t)z p2Cy; COS 01,1
Ao | p1Ca,sc086p
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52 2s* 2
+'T{91—P2 - : (Plcﬁt_mcgt)}
2t

02 2y1”

ZuZos { Pl‘l‘ (P2C2t Plcit)} s (18)
Z1z291C1z/COS 011 , (19)
Z1:=01Cys/cos Oy (20)
Zoy=02Ca1/cOs Oz , 21
Z3:=02C24/COS O3 . (22)

When Ci; approaches to zero, only the longi-
tudinal wave exists in medium 1, namely, me-
dium 1 becomes liquid. The amplitude As/Ao
given by the eq. (16) is reduced to

2221 COos Zﬁzt
Z31 cOs? 202t+Zzt sin? 202;5—|—le

Au_ pi
Ao - 2p2
This result coincides with Khalatnikov’s calcula-
tion for the Kapitza resistance of a liquid-solid

interface.!?
If Gyt >Cyi, when 6y becomes larger than sin™?
(C1L/C2t), then,

sin f;==Cy: sin 00/C1l> 1,
cos Os;=i4/sin? Og;—1 ,
(W'r)y=Az: €Xp {ikz2: X sin Oy,
+ ket Za/5in2 Ogs— 1 —iwt} (23)

accordingly, (¥'r), attenuates in the direction
Z<0, and the amplitudes A, Ais, Az and As
become complex numbers. This means that the
phases of Ay, Az, Az, and Az; deviate from zero.
In this region of the incident angle the amplitudes
Agi/ Ay and Az¢/ Ao may have poles in complex s-
plane. Generally speaking, it is hard to find
where these poles are. In a special case that
01/p2K 1, they have a pole at s=so+i01Cui/(02C21)
as the case of liquid-solid junction, where so is
the solution greater than 1 in the following equa-
tion

CZ
16(1— 2t> (24 16 St >s4—|—8s2—1 0.
G, 3

24)

This pole, which corresponds to Rayleigh sur-
face waves of a free body, plays an important role
to the Kapitza resistance through the interaction
between surface waves and free electrons in the
liquid-solid junction. Thisinteraction is the cause
of change of the Kapitza resistance as the super-
conducting metal is going to the normal state.
A contribution of Rayleigh surface waves to
Kapitza resistance was formulated by Little® and
Andreev® in the liquid-metal junction. Both
theories coincide in magnitude of the Kapitza
resistance by dropping the interaction between
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conduction electrons and the transverse surface
waves in Andreev’s theory, which is appropriate
for T=0.01°K because of lower attenuation of
transverse wave.” Then, when we extend this
Little’s theory to the dielectric-metal junction,
we also neglect the interaction between the trans-
verse surface waves and free electrons and
consider only the interaction between the longi-
tudinal surface waves and free electrons in a
metal.

When 6, becomes as sin o> Ci1/Cyi, the longi-
tudinal displacement vector u; is expressed in a
medium 2 as

w=grad ¢; ,
o1=Re > Ay exp {ikaX sin Oa+pZ—iwt}
k
= >} ful0){br, exp (ik21X sin fai—iwt)+-c.c.}
k

exp nZ) ,
where

(25

p=kau/sin? Oz —1 ,
Su0)=|A21/(2Ad)| ,
by=Ao exp {i arg (Aai/Ao)} .

The equation (25) corresponds to the eq. (1.15)
of the reference 5). In order to calculate the
heat transfer due to conduction electronsurface
wave interaction O, at the boundary between
a dielectric and a metal, one can use the eq.
(25) according to Little’s theory. Performing
calculations as he did, we can obtain the heat
transfer Q,;

Qe 8(eV1)2m2k* 6
_—_J T8

S (2x)sp:htCl, > ireAT
(eV1)?mk® % < e

— -G, T54T , 2
@) 0B #CE ) : (26)

T

where a=Cy;/Cy, O is the Debye temperature of
a metal, eV is the coupling constant, m is the
mass of an electron, Ey, is Fermi energy and

% px -1
Jn(x)=SO Sl @7)
F= __ P2 szS
01C% Jsint (04,/03))

« @*f2(0) sin 0 tan—Y{~/sin? —a?/sin 0} a0,
sin? f— a2

(28)
atf2(6)(sin2 0—a?)dl .

(29)
Inserting reasonable numerical values into (26),
obtains approximately
O, =TX104F,T34T
+2x10G,T°4T (erg-sec™' cm™2) .

__ P2 CgtS"/ 2
- 5
01C}1 Jsinmt (011/09p)
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A numerical evaluations of F; and G; have been
made for both solids with Poisson’s ratio=1/3 (a
typical value in many solids) and ps/01=1.0 and
Coi/Cu=3.0. This gives
O, =4 x103T34-5x1071T5)4T erg-sec™* cm™2 ,
so the second term is negligible in the equation
(26).
Case 2) Incidence of the transverse phonon.
When the transverse phonon is incident, we
solve the problem in the same way as Case 1).
From the boundary conditions, we obtain the
following equations

coziu All"’“smcilt An—i—coscf:l AZl_siré:ftzt Ay
_ _S—i%%iAo i (30)

_Siléiu All_{_coai)uAthsiréZzz Azl—l-coéjqut
:%EAO , (31)

01 COS 201tA11+p1 sin 261tA1t—p2 CcOS 2602: Az
-+ 02 sin 202tA2¢:p1 sin 2601: Ao ,

p1<git> sin 2011A411—p1 €08 201: A1 — PZ( G )

1 CZZ
X sin 202;1421——‘02 COos 202tA2t=p1 cos 2014y . (33)
These equations are similar to egs. (11), (12),
(13) and (14) and only the coefficients of A4, are
different from them. The amplitudes Az;/A4, and
Azi[ Ao are given by

As 1 01%02 4s
i LA R v & BN W et T
A D| ZuzuZe G

(32)

01C%)

1‘712‘, 2s { _ C? C?
Zi Ca 01 P2+ (Pz 2:—01C%) 5
Ase 11 204%02 252
Az 2 40102 5 (05C2,— 0,C?
4o D[thzu{ + C, (02C3—p1 n)}
20,° 2
—0,C2
+leth {PZ 02 2t)}:] s

where D is given by the eq. (18). These ampli-
tudes Agsi/Ao and As:/Ap have a pole each as the
case of incidence of the longitudinal sound wave.

The heat transfer Q. by the surface mode in a
metal is experessed in the same equation (26) as
Case 1) replacing F; and G; with F; and G;
20:C ét&"/z

01CF; sin™l044/05)
,84 () sin @ tan~Y{+/sin? 6— B?/sin 6} 4,
sin? § — g2

B4f #(0)(sin? 6—p£3)d0

=

2P2Czt
001G,

G S
sin 1((71;/(,721)

where
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B=C1:/Ca ,
and also multiplying a factor 2 because there are
two modes of the incident transverse waves.
f(0)=|A2/(24,)| should be calculated from eq.
(34).

A numerical evaluation of eq. (26) for trans-
verse waves have been made as the previous
case. This gives 0,=(1.3X10¢T3+7T5A4T erg
sec”! cm~2, and therefore the second term is also
negligible.

Adding the heat transfer of the both cases i. e.
incidences of the longitudinal and transverse
sound waves, we obtain O, as

O.  8(eVi)Pm2k* 2]
Lo _de)m i , (O Nprsar
S (2a)sp2#5CY <T>
6475k o*
= TP e FT3. AT, 36
15/90,C3; " (3)
F=F+F;,

where we have put eVi=2:E, (22~1) and have
replaced the transport integral J«(©/T) by its low
temperature value of 4z74/15.

We calculated F numerically in Fig. 2 with
Poisson’s ratio 1/3 in both solids in a range of
relative densities of the two media and the ratio
of the velocities of longitudinal waves in the two
media. From Fig. 2, a numerical evaluation of
Q. gives 0,=1.7x10¢T34T erg sec* cm™2, for
02/p1=1.0 and Cy/Cu;=3.0. This value is com-
parable with the value Q,=5.4x103T34T erg
sec”t cm~2 for the case of the interface between
liquid helium and a metal,” and it is about 1/30
of phonon heat transfer at the interface between
a solid and a solid.

When Cy:/Cy<1, heat transfer Q. is zero,
because interaction of the surface modes with
conduction electrons does not take place. The
sapphire-indium junction for which we perform-
ed experiments is one of the examples of this case.

10

Ca1/Cn

s T 0 20 50

' Salfy
Fig. 2. The integral F with respect to the ratio of
the velocity of the longitudinal waves in the two
media and the relative densities. Poisson’s ratio
is equal to 1/3 in both media.
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§3. Experiment

As mentioned in the introduction, conditions
of the junction where the Kapitza resistance
occurs are important factors in the comparison
with theories. We should like to have a strain
free, perfectly connected, strongly and uniformly
bound, and smooth interface of very pure sub-
stances. It is not easy to find two substances
which fill these requirements. We chose indium
and sapphire and tried to fulfill them.

The samples were made by the same method
as by Neeper’s.? Both ends of a cylindrically
shaped single crystal of sapphire, 30 mm long
X6 mm diameter were polished down to rough-
ness of about 500A. High purity indium
(99.999%) was soldered on one face of sapphire
by an ultrasonic soldering tool. The sapphire
was then put in the tightly fit teflon mold, which
is more than twice longer than the sapphire rod.
This was mounted vertically in an induction
furnace. Pieces of indium was placed directly
above the mold and melted with an induction
heater and casted in the form of a rod, 40 mm
long X 6 mm diameter on the indium soldered end
of the sapphire. Then a narrow zone of the
indium section was molten with an induction
heater. This zone melting was done so slowly
that when the metal solidifies, no conical hole
due to shrinkage of solidification was left on the
top of the indium. This procedure was repeated
a few times. Indium and sapphire are so well
bound that for an example, if we apply force to
the rod perpendicular to its axis, the indium rod
may be bent without any change at the interface.
Then, the teflon mold was cut away and a heater
was attached with varnish, GE 7031, on other
end face of the sapphire as shown in the Figure
3. Finally, two copper wires with a carbon
resistor thermometer for each were soldered
around the indium rod near the boundaries and
also two copper wires with thermometers were
varnished around the sapphire and the sample
was mounted at the bottom a He® evaporator in
our cryostat.

The thermometers used were 33 ohm, 1/4 watt
Allen-Bradley carbon resistors. These carbon
resistors were calibrated against He* vapor pres-
sure (1.2°K—2.2°K) and He® vapor pressure
(1.2°K—0.6°K) for each measurement using a
mercury and an oil manometer. The difference
in height of the manometers was measured with
a cathetometer.

Heat flux applied to the heater was varied for
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different temperatures so as to provide tempera-
ture drops 4T at the interface between the
sapphire and indium about 10m°K. Doubling
the heater power did not affect to the Kapitza
resistance. This shows that 0 is proportional to

AT linearly.
/——> to manometer

e

He

%
indium

¢| \ boundary
g\ sapphire
N thermometers

=—=|~— heafer

Fig. 3. A sample with thermometers and a heater.

The measurement on the normal state of the
indium was done by applying current to the super-
conducting magnet about 17 cm long. Since our
indium rod is 40 mm long, we would compensa-
tion coils on the both end of the superconducting
magnet so that the magnet field is uniform along
the indium rod.

The values for the Kapitza resistance R were
determined from: R=S-4T/Q, where S is the
area of the interface, 47 is the temperature jump
at the interface and O is the heat flow. Deter-
mining 47T, we considered the effect of the long
mean free path of the phonon at the sapphire.?

We measured the Kapitza resistance of a sample
2 in the temperature range from 1.2°K to 2.2°K
two months after producing it and eight months
later we did measurements in the temperature
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range from 0.6°K to 2.2°K. We found increase
of the Kapitza resistance about 10% due to the
lapse of time. We obtained results that R,
=(27.140.2)T~2.58£0.01 °K ¢cm?/W, in the normal
state of indium and R,=(28.84-0.5)7~2.59£0.04 ip
the superconducting state. The typical results

100 — "
?
601 i
° Rs
+ Rn
_. 301 N
z
NE‘
x
10} ]
NP
6F RS +o 1
---Rs  Neeper e
— RsRn theory S

0.8 1.2 1.6
T(°K)
Fig. 4. Kapitza resistance on the sapphire-indium
junction.

were shown in Fig. 4. The dashed line represents
Neeper’s data® on the superconducting state
(sample 2A). The solid line express theoritical
values R, and R,. There, R; based on the acous-
tic mismatch theory agrees fairly well with
Nethercot'® and R, should coincide with R,
because of lack of surface waves, which interact
with conduction electrons as calculated in § 2.

The uncertainty in the measured Kapitza resis-
tance by thermometric error is about 4%;. Also
the uncertainty in the thermometer location
could cause a systematic error of 2%.

In preliminary experiments, we measured the
resistance of sample 1 two months after produc-
ing it. In this measurement, we obtained results
that R,=23.7T-2.4® and R,=24.2T2.%2 for 1.2 to
1.9°K.

§4. Discussion

The estimation of the interaction of the totally
reflected phonon with conduction electrons has
been shown to give an appreciable contribution
to the heat flow across a dielectric-metal junction.
However, quantitative comparison of our calcula-
tion with experiments is difficult, because reports
about measurements on the dielectric-metal junc-
tions are quite few.
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According to our estimation §2, when the
sound velocities of a dielectric are larger than
those of a metal, no difference of the Kapitza
resistance should be observed as the metal goes
from the normal to the superconducting state.
The sapphire-indium junction reported in § 3 is
such a case, because the sound velocities of
sapphire (Cu=12Km/s, Ci;=6 Km/s) are larger
than the velocities of indium (Cy=3Km/s, C;;
=1Kmy/s). Thisisnotanexceptional case. Also,
the sapphire-lead junction measured by Wolfme-
yer et al'® falls in the same category. The velo-
cites of sound in dielectrics are usually larger than
those of metals. We are considering as a direct
check of our estimation an experiment of a
dielectric-metal junction, whose velocities of
sound of the dielectric are smaller.

Contrary to our estimation, a small difference
between the normal and the superconducting of
indium was found in our measurements. The
ratio Rs/R, is about 1.04 to 1.06. This ratio is
slightly larger than 1.02 obtained by Neeper. On
the other hand, Wolfmeyer er al. obtained results
that as temperature decreases below 2°K the ratio
of R;/R, increases above one and that it reaches
approximately to 1.25 at 0.6°K and 1.3 at 0.4°K,,
their lowest temperature. They disagree with
our’s. We plotted experimental results of the
three groups and our theoretical estimation in
Fig. 5, whose ordinate is *RT*® instead of R. We
drew curves for results by Wolfmeyer er al'®
without going into detail. It is a question why

160 ————————
° Rs .
- +
__ES}Wolfmeyer's e ¥
140F . fe ° 1
x Ri} Neeper's © |
o I . R ;
§ 120f AP 1
: o
i °
< o,
100
8o} % | THEORY 1
e
0.8 12 1.6 2.0
T(K)

Fig. 5. Kapitza resistance (4R T3 versus T).

B.S. PArRk and Y. NARAHARA

(Vol. 30,

the discrepancy takes place between three groups.
The size and purity of samples are nearly same
in all three but the method of fabrication of the
sample by the recent Wisconsin group!® may be
different from others. They only mentioned the
name of manufacturer in their paper.* We adop-
ted the method used by Neeper, but we obtained
our sapphire and indium from different sources
from his. Strain at the interface seems to have
some effect on the difference between R; and R,.
However, we guess that strain is not sufficient
enough to explain this difference.

Wolfmeyer et al. applied Andreev’s theory of
the Kapitza resistance between a metal and liquid
helium without showing calculation to explana-
tion of their results, but it can not be applied to
this case of a metal-dielectric solid junction
because of lack of surface waves interacting with
conduction electrons in the metal as shown in § 2.

Qualitatively, these three results suggest that
conduction electrons transfer heat in a dielectrics-
metal junction by other processes than the
interaction between conduction electrons and
surface waves. As one of such processes, Little®
considered a possibility that the conduction
electrons interact with the periodic variation of
the surface potential of a metal caused by the
sound wave of liquid in the liquid-metal junction.
He obtained the result that the heat transfer by
this process is proportional to H(f), where

/2
H(ﬂ)ZS I2(I")2 sin? ¢q-cos20-sin 6d0
0

and 2¢ is the deviation of the phase of the
reflected sound wave in liquid; I" and [ are
some constants due to the phase deviation of
conduction electrons at the boundary. The value
of ¢ is always zero within critical angle above
which the surface disturbance are created. The
calculated contribution to heat transfer is four
times larger than those due to interaction between
surface waves and conduction electrons at the
boundary between helium and a metal. He con-
cluded that this is overestimated.

In the sapphire-indium junction, the value of

*  According to our recent private communication
with Dr. M. Wolfmeyer, their method of sample
fabrication is as follows;

“The samples were prepared by first ultrasonically
cleaning the sapphire rod. A 10y thick film of metal
was then vacuum evaporated onto the end of the rod.
The sapphire and graphite mold were next outgassed
at 1000°C. Finally, ultra pure metal was vaccum
cast onto one end of the sapphire rod.”
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eo is always zero because of no such a critical
angle. Thus, heat transfer by this process is
zero. In order to explain our experimetal results
some modification should be needed in Little’s
theory for such a junction or some other processes
should be considered as long as we think diffe-
rence of the Kapitza resistance between the two
states of a metal is genuine. This is still an open
question.

Finally, we point out that although Kapitza
resistance obtained by all groups have less than
T3 temperature dependence at sapphire-indium
junction in the observed temperature region, the
value of R, agrees fairly well with the theoritical
value as shown in Fig. 5. The theoritical values
based on the acoustic mismatch theory is estimat-
ed to lie between 19.1 and 20.57 2 (deg cm?/W),
which agree well with Nethercot’s calculation.
This anbiguity of the theoretical values is caused
by anisotropy of the sound velocities in indium.
This agreement between the theoretical and our
experimental values is much better comparing
with that at helium-solid junction, where the
theoritical values of R, are few times larger than
the experimental values.
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