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The Thermal Conductivity of Metals at Low Temperatures 
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On the Thermal Conductivity of Metals at Low Temperatures 29 

§ ] . ~NTRODUCTIOI~ 

T~E recent wide access to simple cryogenic equipment has produced a 
new interest in the thermal conductivity of metals at  low temperatures 
and a very great deal of experimental work has been done in this field in 
the last few years. I t  is the aim of this article to  provide a review of this 
work from an experimental point of view. The results must necessarily be 
compared with theory, but no effort is made to examine the basis of the 
theory critically or in any detail. 

The situation in a metal is somewhat more complicated than in a non- 
conductor, since in a metal there are two mechanisms conducting the heat. 
As in non-conductors there is a transfer of heat by the lattice waves, but in 
metals there is in addition a transfer of heat by the electrons. The total  
heat conductivity is thus made up of two components : K a the lattice 
conduction (with which another article in this volume is concerned), and 
K~ the electronic conduction. We may write 

K = K ~ - K  a . . . . . . . . .  (1) 

I t  is of course well known that  the electronic thermal conductivity is 
closely connected with the electrical conductivity of the metal (Wiedemann- 
Franz law). As a not unexpected consequence such effects as magneto- 
resistance, anisotropies of various sorts, and superconductivity have their 
counter-parts in K~. The existence of free electrons in a metal also has an 
effect on the lattice conductivity by  supplying a scattering mechanism 
which is not present in the non-conductors and which in the case of ~eason- 
ably pure metals reduces the lattice conduction to an insignificant value 
compared with the electronic thermal conductivity. 

In  this article we shall deal first with the variation with temperature of 
K~ in normal metals and with the effect on it of a small impurity content, 
of a magnetic field and of crystalline anisotropy. When the impuri ty 
content is very large, K a does become important and K~ and K v in alloys 
are therefore dealt with together. The effects of  superconductivity and 
the behaviour of the thermal conductivity below 1 °x are dealt with in the 
last sections. 

§2. THE TttEOR¥ OF THE ELECTRONIC THERMAL CO:NDUCTIVITY 
2.1. General Remarks 

The calculation of the thermal conductivity, like that  of the electrical 
conductivity, depends upon the solution of the Boltzmann equation t o  give 
the velocity distribution function of the electrons in the presence of an 
external field. This solution is complicated in general, and has so far only 
been carried out for the simplest case : that  of quasi-free electrons where the 
energy is of the form 

h a 
E = s ~ l k l  2 . . . . . . .  (2) 

where k is the wave vector and m the effective mass of the electron. This 
is not such a rigid restriction as it seems, since by choosing a suitable value 
for m we can take account of quite complicated potential distributions. 
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30 J. L. Olsen and H. M. Rosenberg on the 

I t  is also necessary to assume that the distribution function of the lattice 
waves is unaffected by the temperature gradient. This appears to be 
justified except in exceptional cases where the theory is in any case of very 
doubtful validity (e.g. bismuth: Makinson 1938, and Sondheimer 1952 a, b). 

At high temperatures where (O/T) ~ may be neglected a solution may 
easily be obtained (Wilson 1936). The case of an impure metal at low 
temperatures may be dealt with by a method of Successive approximations, 
but the higher order approximations become very complicated and the 
method cannot be applied to the ideally pure metal. Wilson (1937) has 
calculated the zero order approximation at low temperatures and gives an 
interpolation formula for intermediate temperatures. These formulae 
have been investigated in detail and evaluated by  Makinson (1938). 

2.2. Malcinson's Work 

Makinson quotes Wilson's result that  the electronic heat resistance 1/K~ 
can be split into two parts (Matthiesen's rule) so that  

1 / K ~ = I / K o - ~ I / K  ~ . . . . . . .  (3) 

where I[K o is the resistance due to impurity scattering, and 1/K s is the 
resistance due to the scattering of the electrons by  the lattice waves. 
K 0 is connected with the residual electrical resistance P0 by the equation 

Ko=  . . . . . . . . .  

I t  will be noted that ½ (~rk/E) 2 is the ordinary Lorenz number, L0, valid 
for high temperatures where it is obtainable from fairly simple consider- 
ations. The ideal resistance 1/Ki is represented by  the somewhat 
complicated expression : 

1 27h 0 D 

where ~ is the Fermi energy of the electrons, 

D =  (6rr~)~/s hg 
16rr~ma 2 . . . . . . . . . .  (6) 

( ~ ) 1 , 3  4MakO 
A :  3 h~C ~ . . . . . . . .  (7) 

a is the lattice constant and k is Boltzmann's constant. This should 
not cause any confusion with the use of k as the wave vector. 

C is a constant which gives the absolute amount of the interaction 
between the electrons and the lattice. M is the mass of an atom. The 
function ~,,~ is given by  : 

7 zndz 
(x)= 0 (co- l )  . . . . . . .  (s) 
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Thermal Conductivity of Metals at Low Temperatures 31 

For high and low values of the argument this reduces to 

~n p r- ~ for -+0 . . . . .  (9) 

and ~n ~ n_--i--~ \ ~ ]  for - + ~  . . . . .  (10) 

thus 75=124-3 at T = 0 ° K  falling to 100 at about O/T=8.  Intermediate 
values of ~,~ may be found tabulated by Sondheimer (1950). 

I t  will be seen by inspection of (5) that  at low temperatures (below about 
P/10) it reduces to 1/K~=o~T 2 and hence (3) becomes 

1 / K = f i / T + o : T  2 . . . . . . . . .  (11) 
95.3 Ha2/8 

where f l=P°/L°  ' ~'= Koo 02 . . . . . .  (12) 

and K~ is the limiting thermal conductivity at very high temperatures. 
We may note that  a simple calculation yields 

D / ~ = 2  -118 Ha  -21a . . . . . . .  (13) 

where H a is the number of free electrons per atom. 
Makinson has examined the behaviour of eqn. (3) for the cases of copper 

and bismuth, for which he takes H~ to be 1 and 1.8 X 10 -2 respectively. 
His curves for the variation of K in copper of various purities is shown in 
fig, 1. The relative amount of impurity is measured by the parameter 
po/4A where 

3~rhD 
Am-- 16eu ~a---------~ . . . . . . . . .  (14) 

The theoretical calculation of A depends upon our ability to calculate the 
interaction constant C. This calculation may, however, be avoided, since 
for T/O>0.6 we have accurately 

l l a i = A T l O  . . . . . . . .  (15) 

where ai is effectively the electrical conductivity at high temperatures. 
There is a corresponding equation involving the thermal conductivity. A 
may thus be found by measurements at high temperatures on the electrical 
or thermal conductivity. 

An examination of experimental data shows that  for an extremely pure, 
unstrained specimen po/4A might be of the order of 10 -4 while in a specimen 
of lead containing 1 / 10 ~o of bismuth po/4A would be about 5 X 10 -2. 

I t  is seen in fig. 1 that  for all the fairly pure specimens of copper, K~ 
first rises linearly, then less steeply to a maximum which is higher and 
occurs at a lower temperature the greater the purity. I t  then falls to a 
minimum at about 0/5 and then finally rises slowly to a constant value at 
high temperatures. 

2.3. The Lorenz Number  

A series of curves is also given for the Lorenz number L ~ = K j a T .  
These are shown in fig. 2. At high and low temperatures these approach 
the value L0, but in the case of a normal metal such as copper, there is a 

P.M. S U P P L . - - J A N .  i953 I) 
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Fig. 1 

I I '  I I ! 

I "0 l I I I I I | J ' i  

0"6- 

0"2 

I I I I I I I t ~  
0 0.4 0"8 1.2 1.6 

T/O 

The ratio L~/L 0 for monovalent metals showing its dependence on 
impurity and temperature. (Mak~nson 1938.) 

i 

0 

0 0.2 0 .4  0"6 0 . 8  

T/O 
Theoretical electronic thermal conductivity for a monovalent~ metal  showing 

the effect of impurity. The temperatures marked correspond to copper 
( ~ 3 1 5  ° K). (~¢[akinson 1938.) 

Fig. 2 
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Thermal Conductivity of Metals at Low Temperatures 3"3 

decrease at in termediate  temperatures ,  this decrease being more the g rea te r  
the puri ty .  For  an ideally pure metal  L e tends to zero as T tends t(> 
0°K. For  the  bismuth model, with small N a, there  is a marked  difference. 
As the  t empera tu re  is lowered, Le first increases to a ma x i mu m above L o 
and then  goes to  a minimum below L o as the t empera tu re  is lowered fur ther ,  
the variat ions from L 0 being again greater  for  higher puri ty .  

2.4. Sondheimer' s Treatment 

A more accurate  t r ea tment  of  the problem valid for all t empera tures  has  
been given by  Sondheimer (1950) who uses a method  which is a synthesis  
of methods due to  Kroll  (1938) and Kohler  (1949 d). 

Sondheimcr 's  result  may  be expressed in the form 

K = K M ~ - F  . . . . . . . . .  (16} 

where K ~  is the conduct iv i ty  as obta ined f rom Makinson's t r e a t me n t  and  
2" is a correction t e rm which is always positive. F can be expressed in  
te rms of infinite de terminants  and may  be calculated to a n y  degree oi  
accuracy b y  terminat ing  the de terminants  at the  appropr ia te  row and  
column. For  a monovalent  metal,  however,  only two or three  rows and  
columns are necessary. 

The minimum in K at  about  0/5 is also obtained b y  this method,  b u t  
in general Makinson's results arc found to  be only qual i ta t ively  correct  
and his K is about  25~/o too small at  low tempera tures  for an ideal metal.  

A discrepancy which is more serious in principle arises f rom the  fac t  
t ha t  F depends upon bo th  K 0 and K~, and  thus Matthiesen 's  rule breaks 
down. The depar ture  f rom Matthiesen's  rule is however  only of  the order o f  
1%. 

The existence of the min imum has also been confirmed b y  Umeda  a n d  
Yam am o to  (1949) by  an  examinat ion  of Krol l ' s  work (1933 a, b, 1938). 
There  is thus  no doubt  t ha t  the  min imum is inherent  in the  model  used 
and is not  a result  of an  inadequate  degree of approximat ion  in t h e  
solution of the  equations.  

2.5. The Lattice Conductivity 

The lat t ice cOnductivity may,  as will be seen in § 4.2, be t aken  to b e  
ve ry  small in most  metals  due to  the  strong scattering of  the lat t ice waves 
by  the  electrons. There  is also some exper imenta l  evidence (§ 5) to suppor t  
this theoret ical  conclusion, and  in the  discussion of the  electronic t he rma l  
conduct iv i ty  which follows we shall assume tha t  K g is ei ther  negligible o r  
is known in some way. 

2.6. Comparison of the Theory with Experimental Results 

At first sight the  agreement  between theory  and exper iment  is quite  
good. The  general shape of the  conduct iv i ty  curve is close to  tha t  shown 
in fig. 1. The conduct iv i ty  increases l inearly with t empera tu re  at  the: 
lowest temperatures ,  and  as the  t empera tu re  is raised a quadrat ic  t e r m  
appears  in the  resistance, so t ha t  the  conduct iv i ty  rises to  a m a x i m u m  a n d  
then  falls above approx imate ly  0/10. At  in termediate  tempera tures ,  

D 2  
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however, no sign of a minimum in K~ is observed and the conductivity 
always decreases monotonically with increasing temperature once the 
maximum has been passed. 

A less obvious, but much more serious objection to the theory is the 
fact  that  when N a is calculated from the experimental value of ~ using 
expression (12), then Na is seen to be of the order of 2 X ~0 -2 (Hnlm 1950) 
for  a large number of metals where the number of free electrons is 
generally thought  to be of the order of one per atom. I f  this low value 
of N~ had any real significance we would also expect an appreciable 
lattice conductivity in monovalent metals and there is no evidence of this. 

I t  should of course be remembered that  the model used is only a very 
rough first approximation to the situation in a real metal. A rather 
simpler objection to the above calculation may be made on the grounds 
tha t  the calculation of N~ has been made using the Debye 0 rather than a 
0., 0L, specially associated with the longitudinal vibrations only, as would 
be expected from the Bloch theory (Blackman 1951). Blackman has 
calculated values of 0 L for a number of metals, and if these are used in 
the  calculation of N a much larger and more plausible values of N~ are 
obtained. If, however, 0 L were in fact the appropriate 0 to  use then it 
would be implied t h a t  only the longitudinal waves interacted" with the 
electrons. In tha t  case we should expect an appreciable la.ttice conducti- 
v i ty  since to a first order the transverse waves would not be scattered by 
the electrons. This has not been observed experimentally. 

2.7. Modification of the Theory when N a is small 

Very recently Sondheimer* (1952 a) has pointed ou t  that  the Wilson- 
Makinson theory is in any ease invalid for metals in which N a i s  small. 

Allowance has to be made for the fact tha t  electrons can only in terac t  
with lattice vibrations of wave number q such that  

Iql<21kl 
where k is the wave vector of the electron. This does not affect the 
:results when 2k 0 ~q0 (where Ic o and q0 are the wave numbers corresponding 
to the top of the Fermi zone and to the cut off frequency of the Debye 
spectrum respectively). 

When, however, 2k0<qo the usual expressions have to be modified. 
Since 

D/~=qo2/2ko 2= 2-1/3 N a -213 

this condition is equivalent to D/~>2  or N a <  ~. Thus when N~,<~ 
eqn. (5) has to be modified to 

where 0'~-- ~¢/(2~/D) 0. 

* We are very grateful to Dr. Sondheimer, who has shown us the manu- 
scripts of his papers before publication. 
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Wi th  this modified form for  eqn. (5) Sondheimer  (1952 b) finds for 
in eqn. (12) 

x----6~ 75(°°)/~2 D K~ 0 ~ for D / ~ 2 ,  

:¢~--3D~5(~))/27r2 ~Koo82 for D/~>2 . . . . . .  (18) 

and this has a min imum value for D/~----2, and  it is found tha t  no values of  
N,, will yield the exper imenta l ly  observed ~ i f  the usual Grtineisen or 
Debye  O's are used in the formulae.  As in § 2.6, however,  an ad jus tment  o f  
8 allows a more acceptabl  e value to be obtained. 

I t  is always difficult to  decide how much  parameters  of this  sort  ma y  
justifiably be adjusted.  Sondheimer  considers t ha t  the simplifying 
assumptions made in the  model are  so sweeping t h a t  it would even 
be reasonable to t rea t  bo th  O and  D/~ as a rb i t ra ry  parameters .  

The suggestion tha t  the  Value of D/~ might  not  be exac t ly  equal to  tha t  
given by  the  simple theory,  indicates tha t  it is not surprising t h a t  the  
theoretical  min imum in the conduct ivi ty ,  which should occur only i f  
D/~< 1.7 is not  found in practice.  

2.8. Klemens' Work on the Form of the Dis.tribution Function 

Klemens* (1952) has recen t ly  suggested tha t  t he  disagreement be tween  
the theoretical  and  exper imental  values for  ~ is due to  a mathemat ica l  
assumption in Sondhe.imer's and previous theories which ma y  not  be 
justified. Sondheimer assumes tha t  the distr ibution funct ion f of  the  
electrons is of the usual form 

0fo (19) f----fo--klc(v) ~ . . . . . . . .  

where ~=(E--~)/kT,  fo is the Fermi  funct ion 1/(eVa-l), kl, k2, k 3 are 
components  of the wave vector  and  c(v) is an unknown funct ion of 7. 
He then  assumes t h a t  c(v) can be wr i t ten  as a series of posit ive powers of 7. 
Klemens, however  shows tha t  in order to satisfy eqn. (5), c(~) should vary  
between a funct ion of the  form B~, B being a constant  and  one propor t ional  
to 7 -2 and hence t ha t  Sondheimer 's  assumption as to the  form of c(~) is 
not  justified. 

Klemens has solved eqn. (5) very  approx imate ly  using c(v) in the  form 
he suggests, and he then obtains a value of 16.1 for the numerical  coefficient 
of ~ in (12) instead of 95.3 given by  Wilson and b y  the zero approx imat ion  
of Sondheimer.  This new value of ~ does agree much be t te r  with the 
exper imenta l  results and  lends weight to  Klemens '  suggestions a l though i t  
must  be stressed t ha t  these are a t  present  de termined  in a ve ry  approx imate  
manner.  However ,  he hopes to  give a more rigorous and  exact  der ivat ion 
in the  near  future .  

* We are very grateful to Dr. Klemens for letting us see the manuscript o f  
his paper before publication. 



D
ow

nl
oa

de
d 

B
y:

 [S
w

et
s 

C
on

te
nt

 D
is

tri
bu

tio
n]

 A
t: 

20
:1

7 
21

 S
ep

te
m

be
r 2

00
7 36 J . L .  Olsen and H. M. Rosenberg on the 

§ 3. EXPERIMENTAL WORK ON THE r]_'HERMAL CONDUCTIVITY 

IN THE NORMAL STATE 

3.1. General Form of the Results 

Exper imenta l  da ta  for the thermal  conduct iv i ty  of pure  non- 
:superconducting metals and of superconductors  above the superconduct ing 
t rans i t ion t empera tu re  has been ve ry  meagre up till recently.  For  this 
reason it is only lately tha t  it has been possible to  compare  theory  and 
exper iment  in a n y  detail. Qual i ta t ively the  results obta ined agree with 
the  curves of Makinson and therefore  also with the la ter  work of 
Sondheimer.  For  a fairly pure metal  the conduct iv i ty  does increase 
l inear ly  f rom 0°K to a max imum at T,-~O/IO°K, and then  it decreases 
(sharply for pure metals  with low 0). At higher tempera tures  this decrease 
is less steep. The value of the conduct iv i ty  at  the ma x i mu m is usually 
-of the  order of a few wat t  units  except  in the case of ex t remely  pure metals 
o r  some single crystals when it may  be 60 wat t  units or over. 

Berman  and MacDonald (1951, 1952) have  measured the  thermal  and  
electrical conductivi t ies of the  monovalent  metals sodium and  copper in 
t h e  range 4°K to 90°K and 2°K to 90°K respectively. Their  curves for two 
samples of  sodium are shown in fig. 3. Curve I I  is for the purer  specimen 
a n d  it can be seen tha t  the  max imum is much higher and  occurs a t  a lower 
t e m p e r a t u r e  t h a n  tha t  ibr the  less pure specimen shown by  curve  I. At  
t h e  higher tempera tures  where the  lat t ice scattering is dominant  the  two 
curves  coincide. These workers made  a careful search for the  presence 
of  the  minimum in the thermal  conduct iv i ty  which should occur at  40-50 ° K 
for  sodium and at  about  80°K for copper, but  there  was no indicat ion of 
a n y  minimum at all. Work  on copper has also been done by  Allen and 
Mendoza (1948). Their  determinat ions were in the range 1 '8-4°K and 
hence they  have only obta ined par t  of the linear section of the curve. 

For  less pure metals, par t icular ly  those with a high Debye  0, the  graph 
of thermal  conduct iv i ty  against t empera tu re  in the liquid hydrogen  and 
hel ium region is approximate ly  a straight  line which sometimes curves 
slightly towards  the t empera tu re  axis at  higher temperatures .  Such a 
curve is given by  de Nobel (1951) for a 99.4% pure nickel in a report  of 
some pre~var work. Mendelssohn and  Rosenberg (1952 b) have given 
similar results on an annealed nickel specimen of higher pur i ty  (99.997 %). 
De Nobel  also gives curves in the liquid hydrogen  and liquid air region 
for a ve ry  pure iron (99-93°//0) and aluminium which each exhibit  a broad 
m ax im u m  at about  50 ° K. 

De Haas  and de Nobel (1938) give measurements  on a tungs ten  single 
crystal  which exhibits a ve ry  high conduct iv i ty  of about  75 wat t  units a t  
i t s  m ax im um in the region of about  15 ° K. 

3.2. Hulm's  Work 

As can be seen from the above general outline, ve ry  l i t t le systematic  
research has been published on the thermal  conduct iv i ty  of metals  in the 
normal  state.  Most workers have contented  themselves with more or 
less isolated determinat ions  for one or two specimens. 



D
ow

nl
oa

de
d 

B
y:

 [S
w

et
s 

C
on

te
nt

 D
is

tri
bu

tio
n]

 A
t: 

20
:1

7 
21

 S
ep

te
m

be
r 2

00
7 

Thermal Conductivity of Metals at Low Temperatures 37 

The first systematic set of experiments to be done and compared with 
theory is that  of Hulm (1950). While his paper deals with superconducting 
metals, the part relating to their behaviour in the normal state is relevant 
to  this section, and the superconducting aspect will be dealt with later. 

Fig. 3 

3 5  

30 

25 

2C .,z 

10 

o e 
o 

3"0 
o 

2"( 
o 

Ill 1-0 - 
o 

:¢.~o ;:/ :\o 

@o Xo, 
o~ 

- %'o 

I I 
0 20 

\ 
0 \ 

q, 

~ * ' - - , * o ~ q ,  o.__~, o . _ . _ . . o _ _ ,  o 

1 I I I I I 
40 60 80 

(9  
m . Q  

I 
100 

I i ,I I I I I I 
40 60 80 100 

temperature (o K) 

The thermal condt~ctivity of two samples of sodium. Inset, the region between 
30 ° and 100 ° ~: enlarged five times. (Berman and MacDonald 1951.) 

t tu lm has measured ~he thermal conductivity of pure tin, indium, mercury 
and tantalum, and of tin and mercury with known small amounts of 
impurity. The measurements were made from 1-7-4.3 ° K. 

The results have been compared with Makinson's theory and they agree 
qualitatively. Spectroscopically pure tin had a maximum at about 4 ° x, 
whilst a small amount of impurity decreased the conductivity and shifted 
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the maximum to a higher temperature. Graphs of W T  against T s are 
given for his specimens, where W is the thermal resistance, and as is to be 
expected from eqn. (11), these are in general straight lines for the samples 
of higher purity, indicating that  the conductivity is nearly all electronic, 
the lattice conductivity being negligible. Different samples of the same 
metal gave WT~-.~T a curves that  were approximately parallel to each other, 
showing that  the lattice scattering term in I [ T  2 is the same for each, as the  
theory requires. The coefficient of T due to impurity scattering is shown 
to be roughly equal to po]Lo where P0 is the residual electrical resistance. 
This also follows from the theory. 

Detailed examination of the W T , ~ T  a curves however, shows tha t  they  
are not exactly linear (fig. 4), and this is dealt with in § 3.6. 

Specimens which had an appreciable ~impurity did not give WT~.~T  a 
curves which were at all consistent with the theory and Hulm assumes 
that  i n  these cases there is an appreciable thermal conduction by the 
lattice as well as that  by the electrons. In these cases he has examined 
t h e  electronic conduction from the residual electrical resistance and has 
subtracted this from the measured conductivity hence giving the lattice 
conductivity K g. In  the case of impure tin K a is approximately pro- 
portional to T 8, whilst for tantalum it varies as T 2. However, Hulm 
shows that  in the case of tin which had large crystallites, the main 
resistance to lattice conduction is likely to be due to electron scattering, 
which should give a T~ term as is shown in § 4.2, whereas for tantalum which 
had a very small grain size, the scattering at grain boundaries might als~ 
be important in determining the lattice conduction. This should be 
proportional to T 8 (§ 4.1). 

3.3. H u l m ' s  Calculat ion o f  N a 

An interesting feature of Hulm's paper is the section in which he has 
calculated, on the basis of Makinson's theory, the number of electrons per 
atom, Na, both for his specimens and for some of earlier workers. He  
shows that  the value of N a comes out to be of the order of 0.03 whereas it 
is generally assumed tha~ N a is of the order of unity for the monovalent 
nmtals and should certainly be more than 0.03 even for those of higher 
valency. 

3.4. More  Recent  W o r k  

An investigation of the conductivity of several samples of one metal, 
aluminium, has been done by Andrews, Webber and Spohr (1951). They 
have measured the electrical and thermal conductivities of two single 
crystals and one polycrystalline specimen of high purity aluminium 
(99.995~/o) between 2 and 20°K, All the specimens had a very high 
conductivity, of the order of 50 watt units at their maxima, which occurred 
in the range 14-17 ° K. As is to be expected, the single crystals which were 
purer, and had fewer lattice defects had a higher conductivity than the 
polycrystalline specimen. They find that  within the limits of experimental 
error, the lattice scattering term, ~, is the same for each, confirming 
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Thermal Conductivity of Metals at Low Temperatures 39 

Hulm's results mentioned above. The curves are shown to agree with 
those to be expected from MakinSon's and Sondheimer's theories, although 
in order to make them fit quantitatively N a has to be assumed to b e e f  the  
order of 0.05. They suggest that  this small value of 2V a might be resolved 

Fig. 4 
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Variation of T/Kn with T s for mercury specimens and for the pure lead specimen 
of de Haas and Rademakers (1940). Hg2, 3, 6, 8 have as impurity 
0"002% Cd, 0-007% Cd, 0.10% In and 0"39% In respectively. (Hulm 
1950.) 

by modifying the transport theory of electrons to take into account the 
presence of filled and nearly filled zones in multivalent metals. Since 
however monovatent metals, which do not have nearly filled zones also. 
give a small value of N a by these theories it seems unlike]y that  this. 
approach will solve the problem. 
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Johnston, Powers and Ziegler (1951) have measured the conductivities 
of pure iron, copper and aluminium and some aluminium alloys in the 
range 20°x to room temperature. One aluminium alloy did show a 
minimum in the condUctivity but it is doubtful whether this really is 
strong evidence in favour of Makinson's theory since most alloys have an 
appreciable lattice conductivity and it is always possible to have suitable 
lat t ice and electronic components superimposed so that  a minimum is 
obtained in the resultant conductivity. 

A detailed series of experiments has been carried out by Mendelssohn and 
Rosenberg (1952 a, b) in which they have measured the thermal conducti- 
vities of as many metals as could be obtained in a very pure state. Over 
th i r ty  elements have so far been investigated and the results give a general 
idea of thermal conductivity values and variation with temperature. 
All the metals of groups l, 2, and 3 which were investigated had a fairly 
high conductivity of the order of 10 watt units or more in the neighbour- 
hood of the maximum. In the 3d, 4d and 5d transition groups, the metals 
at  the end of each group, i.e. the group 8 elements, have a much higher 
conductivity than the elements a t  the beginning of the group. Thus the 
conductivity of the iron specimen at 20 ° K was ~-~2 watt  units, whereas the 
conductivity of manganese, the element before it in the 3d group, was 
about 0.02 watt units at the same temperature. I t  has been suggested by 
Mendelssohn and Rosenberg that  this general effect is probably closely 
allied with the more complex crystal structure of these earlier elements and 
also to the fact that  their general physical properties, e.g. hardness, 
ductility, etc. are very dependent on gaseous impurities which are very 
hard to remove. 

3.5. The Conductivity of Anisotropic Crystals 

One interesting set of curves that  is presented is for two zinc single crystals 
from the same batch--one with the hexagonal axis at 80 ° to the rod axis 
and the other at 13 ° to the axis. The curves are identical at the high and 
low temperature ends but in the neighbourhood of the maximum the 13 ° 
crystal has a conductivity 10~o greater than the 80 ° crystal. This is 
connected with the fact that  the atomic spacing in zinc is different parallel 
and perpendicular to the hexagonal planes. 

Later work of this type has been done on cadmium and gallium single 
crystals grown along different axes and this work may give an insight into 
the lattice-electron interaction. 

3.6. The Linearity of the W T  N T a Curves 

Experimental results are frequently expressed in the form of curves of 
W T  against T 8. They are seldom perfectly straight lines (fig. 4) and it 
seems of interest to calculate what deviation from linearity is to be expected 
from the theory. 

At very low temperatures the function ~5 in eqn. (5) is approximately 
constant and hence curves of W T  against T a in this range will be linear. 
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As the temperature is increased however, ~5 starts to decrease fairly 
rapidly and so the curve in this region will bend over towards the T a axis. 
The second term in T 4 involving both ~5 and ~7 is very small in comparison 
and can be neglected. I t  is of interest to estimate up to what temperature 
the WT ,--,T a curve can be expected to be linear. 

This we have done using the more accurate computations in 
Sondheimer's (1950) paper. These show (fig. 5) that  for an ideally pure 
metal (po/4A-~O) the curve deviates from linearity by 10% (i.e. the slope 
is changed by 10%) at a temperature of approximately 0.125 0, and by 
15~/o at 0.1440. With increasing impurity this deviation starts at 
progressively lower temperatures. With po/4A=O.03 there is a 25% 

/ 
0"4 V 

0"2-- 

0-1 
i 

Fig. 5 

Y J  
/ 
/ 

0 I I I .. i 

T a o ~ 4 6 (~ )  × io~ s 

Graphs of WT against (T/O) 8 as calculated from Sondheimcr (1950), 
showing how the departure from linearity depends on impurity. 

deviation at 0-1 0 and a 33~/o deviation at 0.125 0. Incidentally this result 
that  the impurity affects the deviation is an example of how Sondheimer's 
treatment shows that  the ideal and impurity resistances cannot really be 
separated and that  Matthiessen's rule is only a first approximation. 

We should thus expect WT,-~T 3 curves to be linear up to about 0-1 6 and 
above this temperature the curve should turn towards the T 3 axis. For 
most metals this does occur, confirming the theory, but in some casqs the 
WT curve rises above the linear part. This is shown by Hulm (1950) 
for two mercury specimens Hg2 and Hg3 and also for a lead specimen of 
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de Haas and l~ademakers (fig. 4). I t  also occurs in Mendelssohn's and  
Rosenberg's results for platinum and iridium and in later work on gallium. 
I t  seems exceedingly unlikely that  in these specimens this could be due to, 
lattice conduction, particularly since any increasing lattice conduction 
would tend to decrease the resistance. 

I t  should not be expected, however, that  the theory, which is only for 
monovalent metals, although it gives a qualitative picture for polyvalent 
metals as well, should hold to the extent of the higher approximations of  
the W~-~T relationship. 

§ 4, THE LATTICE COINDUCTIVITY 

4.1. General Remarks 

The lattice conductivity in a metal is influenced by all the factors which 
determine it in a non-conductor, and in addition the presence of free 
electrons play an important role in reducing its magnitude. The lattice 
conductivity of non-metals is described in another article in this volume, 
but it will be convenient also to give a brief summary of the theoretical 
results for non-metals here. 

In such substances the lattice conductivity is limited by a number of 
scattering processes to which correspond resistances which may be treated 
as additive. One may consequently write 

1 / K g = - W = W D + W B + W v  . . . . . .  (20) 
The terms are : W1) due to scattering of the lattice waves by defects in the 
crystal, these may be impurity atoms, unoccupied lattice points, or other 
dislocations ; W~ the term due to scattering of the lattice vibrations at  
the boundary of the specimen or at internal grain boundaries. W v is 
the resistance due to interaction of the lattice vibrations amongst them- 
selves. This is in the main due to umklapp processes. 

The temperature dependence of these terms is given by 

W.  ~c T, 

W.  oc T-~, 

W~ oc T" exp (--O/2T). 

While eqn. (20) seems to be a satisfactory approximation, it is not 
completely reliable and in temperature regions where two of the terms are 
of the same order of magnitude, the total W becomes considerably larger 
than is to be expected from (20) (Klemens 1951). The total lattice 
conductivity in a pure specimen will have a maximum at about 0/29 
which may be of the order 20 watt units. 

4.2. The Effect of Electronic Scattering 

In the case of a metal the situation is complicated by the presence of  
electrons which scatter the lattice vibrations strongly. A further term 
has therefore to be added to the expression for W and we shall call this 
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resistance due to the electrons W E. Sommerfeld and Bethe (1934) and 
Wilson (1936) find that  this term is given by 

T 2 

]~a hO ~. M 
where G=  2~" m" a a C/' (Makinson 1938) (22) 

and the remaining symbols have the meanings used in the description 
of the theory of the electronic thermal conductivity in § 2.2. 

Makinson assumes 

Cj~-=~ C 2 

where C is the interaction constant used in eqn: (7) .  This implies that  
the longitudinal and transverse waves interact equally with the electrons-- 
which of course is contrary to the simple Bloch theory. 

G may then be deduced from the electronic conductivity at  high 
temperatures and it is found that  

27 
4rv~ Na 'z K~ (T>O) . . . . . . .  (23) 

or LoaT may be substituted for K~ to give G in terms of the electrical 
conductivity at high temperature. 

Then 
27 L o a T  

G-~ ~rc~N a 2 ( T > O ) . . . . . . .  ( 2 ~ )  

4.3. The Lattice Conductivity in a Metal 

In fig. 6 we show a general picture of the variation of a typical lattice 
conductivity with temperature. At very low temperatures scattering by 
the crystal boundaries will be important and the conductivity will  vary 
as T 3. At slightly higher temperatures scattering by the electrons will 
become predoniinant and the conductivity will vary as T 2. Still higher 
temperatures will make the impurities and finally the umklapp processes 
<)f importance. 

I t  is of interest to calculate the absolute value of the lattice thermal 
conductivity which may be expected in a metal in the region where the 
scattering is mainly due to the electrons. At 10 ° K this yields a conducti- 
vi ty of 2 X 10 -2 watt  units for lead, and 4X 10 -3 watt units for iantalum, 
while a metal like bismuth with very small effective number of electrons 
will be expected to have a conductivity of the order of 15 watt units. I t  
is therefore obvious that  the lattice conductivity of a metal can only be 
measured if some steps can be taken so to reduce the electronic thermal 
conductivity that K g becomes a very much more important contribution 
to  th~ total conductivity than the fractional percent to be expected in a 
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pure metal  with a large number  of free electrons. This can be done in  
some cases in a high magnetic  field, or by  the addition of impurit ies.  
Descriptions of these methods  a re  given in § § 6 and 5 respectively.  

§ 5. THE THERMAL CONDUCTIVITY OF ALLOYS 

5.1. The Effect of Impuri t ies  in a Metal 

As has been ment ioned previously, the electronic thermal  conduct iv i ty  
K~ is considerably reduced when a small amount  of  impur i ty  is present .  
The impur i ty  scat ter ing becomes the dominant  cause of thermal  resistance 
over quite a wide t empera tu re  range, instead of being effective only at  the  
lowest temperatures .  I t  overshadows the resistive effect of the  lat t ice 
vibration's and the curve of K ,  against T shows no ma x i mu m but  is l inear 
up to  quite a high tempera ture .  

Fig. 6 

f y 

/ 

T 

The theoretical general form of Kg. The dotted line show's the form for an 
insulator and the dashed line the form for a metal if only electrons scattered 
the lattice waves. (Makinson 1938.) 

In an  alloy (which will usually contain several percent  of effective 
impur i ty  atoms) the electronic thermal  resistance is ve ry  much  increased 
and K s is ve ry  often reduced unti l  i t  is of the same order of magni tude  as 
K ~I, the  lat t ice conduct ivi ty ,  which is not  affected so much. Hence the  
curves of to ta l  K against T for an alloy differ f rom those to be expected 
from a pure metal,  not only by  the  orders of magni tude  involved,  but  also 
by  the  fact t ha t  whereas in a pure  metal  K g is negligible, in an alloy its 
contr ibut ion is a considerable propor t ion  of K. 
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5.2. Experimental Results 

Where the thermal resistance is dictated by impurity scattering the 
Wiedemann-Franz law holds and the value of K~ can be found from 
electrical measurements of the residual resistance P0. Then wehave 

K g:K--LoT/p  o . . . . .  (25) 

This type of calculation has been made by Hulm (1951) and Berman 
(1951 b). Hulm's results on a CuB0 Ni20 specimen show that  the lattice 
conductivity is proportional to T 2 between 2 and 20 ° x. This indicates 
that  in this range the lattice waves are scattered by electrons. 

This is borne out by the work of Berman (1951 b) on German silver, 
stainless steel and constantan in the range 2-90 ° K. He also finds the lattice 
conductivity is of the same order as the electronic conductivity and is 
proportional to T ~ up to 20°K. Above this temperature, however, the 
increase is more gradual and in all cases K g reaches a maximum in the 
range 50--90°K. Bcrman has further analysed the lattice conductivity 
of his German silver specimen and has estimated the effects of the various 
scattering mechanisms (fig. 7). He suggests tha t  whilst the low tempera- 
ture scattering is due to the electrons, scattering due to small scale lattice 
defects and impurities becomes increasingly important a t  higher 
temperatures. This resistance W~ begins by being proportional to T but 
at higher temperatures becomes less temperature dependent. He also 
shows that  the resistive effect due to scattering at grain boundaries WB 
is only about ½~ of the total resistance at 2 ° K and it decreases rapidly at 
higher temperatures, hence it can be ignored. 

work by/Karweil and Schaeffer (1939) on German silver, silver Earlier 
bronze, contracid and steel also shows an abnormally high Lorenz number 

7 

and hence an appreciable lattice conductivity. 

5.3. Alloys for Cryogenic Apparatus 

Cold working, which introduces dislocations into the lattice, usually 
decreases the conductivity (e.g. Cu90 ~qil0 Estermann and Zimmerman 
1951, 1952). I t  is difficult, however, to judge the effects of these treat- 
me.nts since no really systematic work on these lines has been done. 

In general the conductivity of the various iron and copper alloys in the 
range 2-20 ° K is of the order of 10-" or 10 -8 watt unit. German silver and 
stainless steel are particularly bad conductors and for this reason are very 
much used in the construction of low temperature apparatus where the 
heat input must be cut down as much as possible. For the same reason 
constantan is particularly useful for the electrical leads into a cryostat or 
liquefier. 

Berman (1951 b) has given a useful table which shows the heat flow down 
stainless steel, constantan and German silver when the ends of the 
specimen are at temperatures in the range 0-80 ° K. This is particularly 
useful when cryogenic apparatus is being designed. 
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5.4. List of Alloys that have been Measured 

There would be no point in giving a full description of all the alloys tha t  
have been measured and the values obtained since this would add little to a 
general deseriptim~ of the subject. For reference, however, we give as 
complete a list as possible of papers which describe such experiments and 
the alloys that  they deal with. 

5000 

2000 

1000 
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200 

I00 
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20 

! 

~0 

w8 

Fig. 7 

Wg-Total lati:ice resistivity 

WB -Resistivit:)/ due I:o boundary 
scattering 

Wo -Resis tivRy clue to "impurity" 
Scattering 

WE -Resistivi.ty due to scattering 
by electrons 

2_ S 10 20  50 10G T o K 

:Estimated contributions to the lattice thermal resistivity, Wg, in German 
silver from scattering of the lattice waves by electrons, grain boundaries 
and ' impurities ' (i.e. lattice defects etc.). (Berman 1951 b.) 
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Karweil and Schaeffer (1939) German silver, silver bronze (Cu46 Zn41 
Nil3), contracid B7M (Ni60 Crl5 Fe l6  Mo7), steel. 

Allen and Mendoza (1948) German silver. 
Wilkinson and ~Wilks (1949) Nickel silver (Cu63 Znl7 Ni20), stainless 

steel, Cupro-nickel (Cu70 Ni30). 
De Nobel (1951) monel, dural and various steels. 
Estermann and Zimmerman (1951, 1952)monel, inconel, Cu90 Nil0, 

stainless Steel. 
Schmeissner and Meissner (1950) Croman B2Mo. 
Hulm (1951) CuB0 Ni20. 
Berman (1951 b )German  silver, stainless steel, cons~antan. 
Superconducting alloys. 
de Haas and Bremmer (1936 a). 
Mendelssohr and Pontius (1937) Pb90 Bil0. 
de Haas and l%ademakers (1940). 
Hulm (1950) Tin/mercury, mercury/cadmium, mercury/indium. 
Mendelssohn and Olsen (1950a, b, c) and Olsen (1952). Lead/ 

bismuth. 

§ 6. EFFECT OF A ~[-AGNETIO FIELD ON THE THERMAL CONDUCTIVITY 

6.1. Early Work on Bismuth 

Jus t  as the application of a magnetic field on a metal usually increases 
the electrical resistance, so in many cases it also increases the thermal 
resistance, although the thermal effect is not always so great as the 
corresponding electrical effect. 

Some of the  earliest work was done by de Haas, Gerritsen and Capel 
(1936) on bismuth single crystals. They found that whilst the thermal 
resistance increased with increasing field it tended to a saturation value in a 
field of 5.3 kgauss at liquid nitrogen temperatures and in a field of only 400 
gauss at liquid hydrogen temperatures. This effect was interpreted by 
assuming that  the lattice heat conductivity K o was unaffected by  the 
magnetic field and that the saturation value obtained by  extrapolating to 
infinite field was in fact the value of the lattice conductivity. In  this way 
they calculated K a and K~. 

Experiments on bismuth at liquid air temperatures have also been carried 
out by  Grtineisen, Rausch and WeiSs (1950) who show that the effects of 
saturation in their specimens become evident in a transverse field of 
10 kgauss. They calculate that Ko= O. 145 watt  units and K~=  0.0493 watt  
units at 85-7°K. These values are of the same order as those given by  
de Haas and his co-workers. 

This is in agreement with theory which suggests that  due to its small 
number of free electrons, bismuth should have an appreciable lattice 
conductivity. As the temperature is decreased the electronic contribution 
is reduced until nearly all the conductivity is due to the la%ice. 

~.~. Sm'I'L,--aAN. X953 
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Measurements by Shatyt (1944) at lower temperatures bear this out. 
In the range 2-4 ° K the conductivity curve seems to be due to the lattice, 
K varying as T 2'5 approximately and the magnetic field of 4.2 kgauss has 
no effect. At 20 ° K this field increases the thermal resistance by 4% and at 
65-80°K by 15 to 20~o. This shows that  the electronic contribution has 
reached a negligible amount in the lowest temperature region. 

6.2. Work on An t imony  

Similar work on ant imony single crystals of various orientations has 
been done by Rausch (1947) in the liquid air region. In this case no 
saturation was found in a field of 10 kgauss and K g and K ~ were separated 
by a method (indicated below) involving the measurement of the electrical 
resistance in the magnetic field. Depending on the orientation of the 
crystal axis to the axis of the specimen the lattice conductivity varied 
between one-third and two-thirds of the total  conductivity. 

Measurements of conductivity were also taken in a constant transverse 
field which was rotated about the axis of the specimen. A periodicity was 
observed, the conductivity decreasing to a minimum and then increasing 
to a maximum in a rotation of 180 +. 

6.3. Experiments  on Tungsten 

Whilst these experiments are of interest, they do not give a good idea 
of the general results to be expected because neither bismuth nor antimony 
are good representative metals--both have a small number of free electrons 
and an appreciable lattice conductivity whereas in most metals the lattice 
conductivity is very small. 

Early experiments on more normal metals were made by Grfineisen and 
Adenstedt (1938) who measured the effect of a field up to 12 kgauss on 
the thermal and electrical resistances of copper, tungsten and beryllium 
single crystals and of platinum and silver polycrystals at the temperature 
of liquid hydrogen. They found that  only in the case of the single crystals 
was there an appreciable change in the thermal conductivity. The ]argest 
effect that  they measured was for a beryllium sample whose thermal 
resistance increased about 60 times in a 12 kgauss field. 

Experiments have also been made on a tungsten single crystal by de 
Haas and de Nobel (1938). Their work was in the range 14-20°K and 
in fields up to 26.3 kgauss. Later  experiments by de Nobel (1949) 
extended the range of measurements up to a field of 36.4 kgauss. 
Both thermal and electrical conductivities were measured as a function of 
temperature and of field. At 15 ° K they found that  the thermal resistance 
was increased 222 times in a field of 36-4 kgauss, several orders of magni- 
tude greater than the bismuth results quoted above. Another difference 
they found was that  the effect of the magnetic field increased at lower 
temperatures, whereas for antimony and bismuth the opposite occurred. 
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6.4. Calculation of the Lattice Conductivity from Magnetic Effects 

The value of the lattice conductivity can be found as follows : -  
Since K = K ~ - K  a and K~ is related to the electrical conductivity, a, 
by K~----L~aT where L~ is the Lorenz number, then 

K----_L~aT~-K o . . . . . . . .  (26) 

Hence assuming that  L~ does not alter in a magnetic field, a plot of K 
against aT as H is varied should be linear and the intercept on the K axis 
(i.e. at H~- ~)  should give K a. 

This is the basis of the method for deriving K o for antimony used by 
Rausch. For tungsten, however, de Nobel found that  although at  lower 
fields K was proportional to a at constant temperature, at higher fields the 
slope of the curve was increased and he found it impossible to separate out 
the lattice and electronic components. 

6.5. Experiments on Beryllium 

Experiments on beryllium single crystals at 20°K have been done by 
Griineisen and Adenstedt (1938) and Griineisen and Erfling (1940). 
They measured the conductivity as a transverse field was rotated about the 
specimens and they found strong anisotropy, the conductivity being 
dependent on the angle between the field direction and the direction of the 
z axis of the crystal. By taking electrical measurements as well they were 
able to estimate the value of the lattice conductivity and confirm that  at 
20 ° K it is very small, while at 90 ° K it is a considerable proportion of the 
total conductivity. They also give rotation diagrams for copper and 
tungsten single crystals. 

6.6. Experiments in the Liquid Helium Region 

Up till recently very little work has been done in the liquid helium 
region. I-[ulm (1950) has determined the change in thermal resistance for 
pure tin at 4.29°K in a longitudinal field. He finds that  the resistance is 
nearly doubled in a field of 1 500 gauss and that  up to 400 gauss the relative 
change in conductivity (Ko--K~)]KH is of the form 2H/(I+tLH 2) where 
K 0 and K R are the conductivities in zero field and field H respectively and 

and t~ are adjustable parameters. For small impurities in the tin no 
magnetic effect was observed. 

Mendelssohn and t~osenberg (1951) have published measurements on a 
polycrystalline specimen of cadmium whose thermal resistance increases 
in a transverse field of 3.8 kgauss by a factor five at 4.4°K and by over 
seven times at 2.2°K (fig. 8.). In a longitudinal field the effect was very 
much smaller. They have continued this work with other elements 
(1952 c) and in general they find that  a field Gf 3.8 kgauss produces a 
measureable effect only in metals that  have a relatively low melting point 
and are mechanically rather soft. So far measurements have been taken 
on polycrystalline indium and thallium and on single crystals of zinc, 

. E 2  
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cadmium, tin, lead and gallium. In general the graphs of thermal resis- 
tance against field are linear except for small fields up to 300 gauss. 
A given field usually has an appreciably larger effect at lower temperatures 
and the effect of a transverse field is usually much greater than that  of a 
longitudinal field. They also find that  the effect is greatly reduced in 
polycrystalline specimens and also by the presence of impurities. 

6.7. The Theory of Sondheimer and Wilson 

The simple quasi-free electron model of a metal is of no use for giving us 
an insight into the magnetic effects as it gives us zero change of resistance 
in a magnetic field. A more complicated model must be used which, 
however, must still be simple enough for us to be able to derive a result that  

Fig. 8 

7 

5 
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3 

2 

~r~t~-------"f I I I 
I ;  I 2 3 4 

Field (kilogauss) 

The increase in the thermal resistance of cadmium in a magnetic field. 
(Mendelssohn and Rosenberg 1951.) 

is capable of being evaluated. The simplest model assumes that  the 
conduction electrons occupy two overlapping bands, the s and d bands 
and there is no interaction between the electrons in one band and those in 
the other. The heat flow is calculated separately for each band and the 
total flow is obtained by simple addition. 

This is the model used by Sondheimer and Wilson (1947) who calculate 
the conductivity due to each band under the ivfluenee of a transverse 
magnetic field using as a basis the theory given by Wilson (1936) and 
developed by Makinson (1938). This model is not sufficiently general to 
give a non-zero result for longitudinal fields. They find simplified 
formulae for high and low temperatures and for a large magnetic field and 
a general formula is given which reduces to these in the three limiting cases, 
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I f  n s is the number of electrons in the s band, n d is the number of holes 
in the d band then 

K o - - K  CH ~ 
K - - I ~ F H " '  for nm=/=n d . . . . . .  (27) 

K o - - K  
K ~ E H  2, for nm----n a . . . . .  (28) 

'where C, E and F are functions of K0, T, n s and nd. Hence for ns=/=n d we 
get saturation at large fields and for n s : n  d we get infinite resistance in 
infinite field, They also show that  the application of a magnetic field does 
not affect the lattice thermal conductivity. The corresponding electrical 
effects have also been calculated and the dependence ~ of the Lorenz 
number, L, on the field is given. 

6.8. The Theory of Kohler 

Similar results have been derived by Kohler (1949 a, b, c). His first 
paper (1949 a) gives the general equation 

G H 
Wi I . . . . . . .  

where A N is the change in the thermal resistance in a field H, W o is the 
thermal resistance in zero field and L is the theoretical value of the Lorenz 
number. This is the type of relation we should expect on the basis of 
Kohler's rule for the change of electrical resistance in a magnetic field, if 
we assume L to be independent of T. This he applies to the results of 
de Haas and de Nobel for their tungsten single crystal. 

He shows that  a plot of/1 W/W o against H/WoTL gives a single curve 
for all the experimental points and G is a monotonically increasing function. 
The second paper (1949 b) deals with the special case of a metal with 
ns-~n d in a strong magnetic field and he derives the relation, which can be 
obtained from (28), that  at constant temperature K~ is proportional to 
1/H 2. This he uses to give the following method for separating K~ from 
K a without necessitating any  electrical measurements. We have 
KH=Ka~-K~----Ka~E/H2. Thus a plot of KH against 1/H 2 should give 
a straight line with an intercept of K a. This he applies to the 
measurements on beryllium crystals of Griineisen and his co-workers. 

The third paper (!949 c) gives the theoretical derivation of the formulae 
in which he obtains the same results as Sondheimer and Wilson. This he 
generalizes to tlle equation containing the function G quoted above. 

6.9. Comparison of Theory with Experiment 

Recent work seems to confirm eqn. (29) given by Kohler although the 
function G does not appear to be in the actual form that  he or Sondheimer 
suggests. This is not surprising since the models used are really too 
simple to enable quantitative results to be obtained although they do 
give a qualitative picture. From the results of Mendelssohn and 
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l~osenberg (1952c) in the range 2--5°K, graphs of A W/W o against 
H/WeT show that  all the experimental points for one metal at different 
temperatures do lie on a single curve. Since these results cover a change 
in temperature of 100~ this is a much more stringent test than that  
applied by Kohler himself from the results of de Haas and de Nobel on 
tungsten, since this work was in the liquid hydrogen region and the 
maximum temperature change was only 25%. Graphs for the effect 

Fig. 9 
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,d W/W o against (H/WoT) for tin in a transverse magnetic field, showing how 
the points for three different temperatures fall approximately on one curve. 
(Mendelssohn and Rosenberg 1952 c.) 

of a magnetic field on the thermal conductivity of tin are shown in 
fig. 9. I t  can be seen that  whilst /1 W/W o varies as approximately 
(H/WoT) 2 for small values of H/WeT, for larger values the ratio tends 
to become proportional to H/WeT. 

The points corresponding to high fields at the lowest temperatures, 
however, do tend to fall above the main line of the curve, but it should be 
noted that  the maximum field of 4 kgauss at 2 ° K corresponds to 40 kgauss 
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at 20 ° K. I t  is possible that the variation of L with field may be 
appreciable in this region and this has not been taken into account. 
In general no sign of saturation has been observed in the normal metals. 

Similar graphs for the effects due to a longitudinal field show that 
Kohler's equation holds in this case as well, although the curves are not 
linear and tend to bend over slightly towards the H/LWoT axis. 

We should note that the assumption of two bands having additive 
conductivities each limited by resistances obeying Matthiessen's rule 
cuts out any possibility of the total conductivity obeying this rule. 

§ 7. THE THERMAL CONDUCTIVITY OF SUPERCONDUCTORS 

7.1. Theory 

The theory of the thermal conductivity of a metal in the supercon- 
ducting state is by no means in the advanced stage which the theory of 
the normal state has reached. However, a fairly simple consideration 
of the factors involved allows one to draw conclusions of some interest. 

A superconductor below the transition point which has had its super- 
conductivity destroyed by the application of a magnetic field will 
presumably (except for the effects of magneto resistance) behave in the 
way we have described in the preceding paragraphs for normal metals. 
We may then write eqn. (1) in the form 

K~,=K~d-Kg~  . . . . . . . .  (ao) 

Here we have added the suffix n to indicate that  it is the behaviour in 
the normal state that  we are discussing. The values for K ~  andK a~ 
will be governed by the same factors tha t  were found to govern the 
values of K ~ and K g. 

In the absence of a magnetic field, however, when the substance is 
superconducting, the distribution of the electrons in phase space will be 
altered, and it may be expected that  the electronic thermal conductivity 
in the superconducting state K~,  will be different from Ke~. Since Ka. ,  
the lattice conductivity in the superconducting state, is also to a large 
extent dependent upon the amount of scattering by the electrons, we 
may expect that  the new electronic distribution will also cause a change 
in the lattice thermal conductivity from its normal value. 

I t  was pointed out be de Haas and Rademakers (1940) tha t  the 
'superelectrons'  which carry the resistanceless current in a super- 
conductor cannot be expected to take part in carrying the thermal 
current  and that  therefore K~s would be expected to be smaller than 
K ~ .  Hulm (1950) has pointed out that  since the 'superelectrons'  
move without friction against the lattice, they presumably do not con- 
tribute to the scattering of the lattice waves and that  therefore K as 
might be expected to be greater than K a~" 

We thus have for the superconducting state 

K ~ = K ~ + K  o . . . . . . . . . .  (31) 



D
ow

nl
oa

de
d 

B
y:

 [S
w

et
s 

C
on

te
nt

 D
is

tri
bu

tio
n]

 A
t: 

20
:1

7 
21

 S
ep

te
m

be
r 2

00
7 

54 J . L .  Olsen and H. M. Rosenberg on the 

where K ~ K ~ n ,  and where K g ~ K ~ .  Since in pure substances K~,~ 
is much greater than K g, we may expect that, unless the change in K g 
is very large, the total K s will be smaller than the total K,~. 

Whilst the above general remarks give a qualitative idea of the 
behaviour, some more detailed prediction of the actual values of the 
ratios Kes/Ke~ ~ and Kg~/Ka,~ is of course desirable. Such a calculation 
has been made by Heisenberg (1948) on the basis of his theory of super- 
conductivity and the calculations of Koppe (1947). 

Heisenberg considers the general formula for the thermal conductivity 

K:½1vC . . . . . . . . . .  (32) 

where l is the mean free path, v the  velocity of the particles carrying the 
thermal current and C their specific heat. 

As a~ rough approximation he assumes that  the mean free path of the 
' n o r m a l '  heat transporting electrons in the superconducting state is 
longer than that  of the electrons in the normal metal by a factor 
1/(1--w[2) where w is the fraction of superelectrons, v is of course very 
nearly the same in the two states and 

Q = c J ~ ( w )  . . . . . . . . .  (33) 

where k(w) is a ihnction which at the highest temperatures is very nearly 
equal to the value to be expected on the Casimir-Gorter (1934) theory of 
superconductivity. For T/Tc~0.3 this gives to a fair approximation 

K~s/K~,~-~2t2/(1-~t 4) . . . . . . . .  (34) 

where, t=T/T~. At lower temperatures this is no longer correct and the 
ratio of the two conductivities falls exponentially with temperature 
(Goodman 1951). I t  is pointed out by Heisenberg that  the approxi- 
mation chosen for the mean free path of the ' normal ' electrons can only 
be relied upon for the case where the main scattering of the electrons is 
by impurities and that  this calculation also contains other approximations 
which may be expected to break down in the vicinity of the transition 
temperature. 

The success of the theory of FrShlieh (1950) in explaining the isotope 
effect on the critical field and transition temperatures of superconductors 
seems to indicate that  the Heisenb~rg theory and calculations of the 
type described above should not be taken too literally. On the other 
hand it would appear that  the Heisenberg theory has been so adjusted 
that  one may expect it to give a reasonably correct estimate of the 
behaviour of t h e  superconducting thermal conductivity. 

7.2. The Circulation Hypothesis 
Before continuing to a description of the experimental side of the 

subject i~ is appropriate to mention an interesting idea first suggested by 
Mendelssohn (1946) and later used by Mendelssohn and Olsen (1950 a, b, e) 
in an attempt to explain certain of.their results. I t  was suggested that  
there might exist in superconductors an analogue of the fountain effect 
in liquid helium II. This would consist of a stream of ' superconducting ' 
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electrons flowing from the cold to the hot end of a specimen, being 
converted to ' n o r m a l '  electrons there and flowing back as ' n o r m a l '  
electrons with a finite heat content, which is given up at the cold end of 
the specimen again. Thus a circulation process is set up. This circulation 
might be expected to vanish at the transition temperature and at the 
absolute zelo and to have a maximum at some intermediate temperature. 
Its absolute magnitude would be difficult to calculate a priori. 

7.3. Experimental Work 
While experiments were made as early as 1914 by Kammerlingh-Onnes 

and Holst to investigate whether the thermal conductivity showed as 
startling a discontinuity as the electrical conductivity, no further research 
was carried out in this field until the thirties (de Haas and Bremmer 
1931, 1936 b, Mendelssohn and Pontius 1937, and de Haas and Rade- 
makers 1940). The results of these investigations were that  for pure 
substances Ku was greater than K~, while for alloys this was not always so. 
The ratio KJK~ even for the pure metals showed two distinct types of 
behaviour. In the case of tin this was very like that  to be expected as 
the result of Heisenberg's calculation, but in lead K~/K n did not approach 
unity asymptotically as predicted by eqn. (34) but the superconducting 
curve approached the normal one at a finite angle (fig. 10). A similar 
effect was also observed in mercury by Hulm (1950). He carefully 
investigated the behaviour of the ratio K J K  u in a series of tin and 
mercury specimens containing small known amounts of impurity. He 
showed that  for the ideal case of a metal where the main mechanism 
limiting the mean free path of the electron is scattering by impurities, 
the ratio K~/K~ is given by a characteristic function f(t) very closely 
resembling that  suggested by Heisenberg. For the ideal case of lattice 
scattering alone (pure lead and pure mercury) the ratio K~/K n is given 
by some other function which he denotes by g(t). Hulm suggests that  
g(t) is very well represented by t 5. At low temperatures even in the 
purest samples the impurity scattering will become predominant, and 
there KJK,~ will tend to the impurity scattering type of function, f(t). 

In fig. 11 we show values of K d K  ~ for ,lead, t in and mercury specimens 
of various purities. This information has been drawn from papers by 
de Haas and Rademakers (1940), I~ademakers (1949), Hulm (1950) and 
Olsen (1952). I t  seems reasonable to suppose that  the shape of the 
K d K  n curve might be a function of the proportion of the impurity 
scattering present and we have therefore marked all the curves with a 
parameter X which gives this relationship. We have defined 

X - - ~ T ~ / ~ ,  . . . . . . . .  (35) 
where ~ and fl are the constants occurring in eqn. _(11). Thus the larger 
the value of X the smaller the relative amount of impurity scattering. 
I t  will be seen that  although K~/K~ may to a moderate accuracy be 
described as a function of T/T~ and X only, this can at best be a first 
approximation. 
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Interpolation tbrmulae have been given by Hulm (1950) and by Olsen 
(1952) to describe the behaviour of the thermal conductivity for specimens 
with finite values of X. 

Neither of these formulae can be considered to be very satisfactory. 
That given by Hulm is based upon a method of calculation which would 
appear to imply that  the reduced value of the thermal conductivity in 
the superconducting state is a consequence of a decreased mean free path 
of the electrons when the substance becomes superconducting, rather 

Fig. I0  

Normal 

I L I I .  
0 2 4 6 8 

Temperature (°K) 

The thermal conductivity of lead in the superconducting state, showing the 
sharp breakaway from the normal curve at the transition temperature. 
(Mendelssohn and Rosenberg 1952 b.) 

than being due to a fall in the effective number of electrons. The 
formula given by Olsen although empirical would also appear to imply 
a rather unrealistic solution to the problem of combining the mean free 
paths. 

7.4. The Lattice Conductivity in the Superconducting State. 

In some cases the thermal conductivity lies considerably above the 
value to be expected from the Heisenberg theory. We have seen in 
fig. 11 that  the Ks/K,~ ratio became larger in the tin and mercury alloys as 
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the impurity increased and the absolute value of the thermal conductivity 
decreased. Abnormally high values were found in the prewar results on 
alloys containing large percentages of indium and bismuth (de Haas and 
Bremmer 1936, Mendelssohn and Pontius 1937). Mendelssohn and Olsen 
(1950a) were able to show that  for lead-bismuth alloys the KjK~ 
function could be made to vary, as bismuth impurity was increased, 
from a function like that  found by de Haas and l~ademakers, to one where 
the KJK n increased from unity to ten as the temperature was lowered 
from the critical to one third the critical temperature. They suggested 
that  this might best be explained by some additional flow of heat such as 
that  described in § 7.2. 

Fig. 11 

KJK~ 
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T/T.,. 

Graphs of Ks/K~ against T/Tc for tin, lead and mercury showing their depen- 
dence on X, the relative amount of' impurity scattering. From various 
sources, see § 7.3. 

An examination of the consequences of the alternative assumption 
(suggested by Hulm 1950), that  these high values for K s are due only to 
an increase in the lattice conductivity in the superconducting state, 
has been made by Olsen (1952). Assuming also the validity of his inter- 
polation formula for K~.~/K~,, he calculated K gs/Kg,~. This could be 
described with very moderate accuracy by t 6. This does not seem to 
be far from what might be expected if one remembers that  when the 
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electronic thermal conductivity of superconductors is limited mainly by 
the lattice scattering of the electrons then KdK~ varies as t 5. On the 
other hand, the only case for which Hulm has made an evaluation of the 
amount of the lattice conductivity indicates that  the superconducting 
lattice conductivity increases only as the second power of the temperature. 
However, in the tantalum specimen for which these calculations were 
made the amount of impurity scattering of the ]attice waves was very 
considerable. 

In order to disentangle the problems sketched above it would appear 
to be extremely desirable for some more accurate work to be carried out 
to clarify the behaviour of the Ks/K ~ ratio and hence that  of the lattice 
conductivity. 0nly  a series of measurements on different substances 
and with varying impurity contents would allow sufficiently confident 
estimates of K~dK,n to be made to establish the temperature dependence 
of the lattice conductivity in the superconducting state. 

7.5. Thermal Conductivity in the Intermediate State 

The experiments of Mendelssohn and Pontius (1937) and of de Haas 
and Rademakers (1940) showed that  when the superconductivity of a 
cylinder of pure lead was destroyed by a transverse magnetic field the 
heat resistance changed almost linearly from its superconducting to its 
normal value as the field was increased from ½H c to its critical value H e. 
A specimen of lead containing 10~o bismuth showed a more extended 
transition, as might also be expected from a knowledge of the electrical 
behaviour of superconducting alloys. This linearity Of the change of 
thermal resistance is in good agreement with that  obtained if calculations 
are carried out on the assumption that  the cylinder in the intermediate 
state is made uP of a series of laminae normal to the axis, each with 
either the normal or the superconducting conductivity. 

Measurements of the transition in a longitudinal field have been made 
by Hulm (1950) on tin, and Mendelssohn and 01sen on lead, and it is 
found that  these transitions are sharp within the limits set by the 
demagnetization factors of the specimens. In the case of lead at 2.7°K 
it is even found (Olsen 1952) that  the transition in the thermal conduc- 
tivity is sharper than the electrical transition observed by MacDonald 
and Mendelssohn (1949) in very pure specimens of small demagnetizing 
factor. 

Transverse transitions observed by Mendelssohn and Olsen (1950 c) in 
lead with a small (0.02~/o) impurity of bismuth at 5-3 ° K were found to 
be similar to those found by earlier workers. At a lower temperature 
(2.9 ° K) however, an entirely new and unexpected type of transition 
(fig. 12) occurred. Instead of increasing monotonically from the super- 
conducting to the normal value as the magnetic field increased, the 
thermal conductivity fell very sharply when field first penetrated the 
metal, and then after reaching a minimum the conductivity increased 
to the normal value. This has since been found in pure lead by V~ebber 
and Spohr (1951), Olsen and Renton (1952) and Mendelssohn and 
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Rosenberg (1952c). Detwiler and Fairbank (1952) have also observed 
similar transitions in very pure tin and indium at about 2.2 ° K. This 
behaviour is of course inconsistent with any combination of regions 
having either the normal conductivity Kn, or the superconducting 
conductivity Ks, and this has been pointed out by Mendelssohn and 
Olsen (1950 c). 

A solution can however be found in terms of either of three explanations. 
That first suggested by Mendelssohn and Olsen was one based on the 
hypothesis of a heat circulation in the  superconducting state. A second 
explanation is based on a suggestion by Landau (1943) that there might 
be an extra scattering of the electrons at the boundaries of the laminae 

Fig. 12 
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The change in the thermal conductivity of a lead-bismuth alloy during the 
transition from the superconducting to the normal state showing the 
initial decrease in the corfductivity in increasing field. (Mendelssohn and 
Olsen 1951 c.) 

constituting the intermediate state. The transitions observed may 
however also be explained on the basis of Hulm's suggestion of an 
increased superconductive lattice conductivity (Olsen 1951, Webber .and 
Spohr 1951, Olsen 1952) if the mean free path of the electrons and/or 
lattice waves is comparable in length with the thickness of the regions 
forming the intermediate state. The appearance of a very small 
percentage of normal material can then remov, e the high lattice 
conductivity. 

7.6. Work below I°K 

The first work on the thermal conductivity of superconductors below 
l ° x  was carried out by Heer and Daunt (1949 a). They were able to 
m e a s u r e  K~]K~ for t in and tantalum between 0.2 and l ° x  and their 
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measurements indicated that  K J K .  varied as (T/Tc) 2. For tin at 
0"65°K it was found that K s / K . = l / 4 0  , and for tantalum at 0.55°K 
that  K~/K, = 1/60. 

Goodman (1951) has measured the thermal conductivity of tin specimens 
of various purities down to 0.2 ° K. He was able to eliminate the effect 
of the lattice conductivity and he gives a curve for the ratio K~dK~n. 
This is found to be in close agreement with the ratio obtained from 
Heisenberg's theory. 

Olsen and Renton (1952) have made measurements on a lead single 
crystal down to 0.3 ° K. They find that  the superconducting thermal 
conductivity follows ,. T a law below about 0.9°K. Above that  
temperature the conductivity rises somewhat more steeply. 

Heisenberg's theory and Goodman's experimental work indicate that  
the electronic thermal conductivity will be very small below 1 ° K. I t  is 
therefore reasonable to suppose that  the conductivity is entirely due to 
the lattice. The actual observed conductivity would correspond to the 
ease of pure boundary scattering with free path 5 times less than the 
diameter of the single crystal rod. I t  is not clear whether this discrepancy 
is to be ascribed to an unreliability in the simple theory of boundary 
scattering or whether it is simply due to filaments of normal metal remaining 
frozen in after demagnetization. Such filaments might also be expected 
to give a 1/T 3 term in the thermal resistance. The closeness with which 
the conductivity follows a T ~ law would appear to confirm that  the 
amount of electronic scattering of the lattice waves is very small. 

Olsen and I~enton have also measured the variation with magnetic 
field of the thermal conductivity at 0.43 and 0"7°K. Their curves show 
the minimum observed at higher temperatures, but in a less pronounced 
form. The possibility Of some field remaining frozen in after the 
demagnetization makes it difficult to draw reliable conclusions from 
these measurements, but the shallowness of the minimum might well be 
taken as evidence that  K ~  and Ka~ are more nearly equal than is 
assumed above. 

§ 8. EXPERIMENTAL TECHNIQUES 

8.1. General Arrangement 

The basic set-up far all the experimental work is essentially the same. 
The specimen is in rod form, a few centimetres long and perhaps up to 
five millimetres in diameter. I t  is usually mounted vertically by one 
end in an evacuated container so that  no heat can be transmit ted by 
conduction or convection to the walls. This end is in good thermal 
contact with a liquid helium bath for the lowest temperature measurements 
and with liquid hydrogen or air for readings at higher temperatures. 
Radiation losses are small at these temperatures, but in some cases a 
radiation shield is fitted to surround the specimen and the thermometers. 
A small electric heater is fitted to the free end of the specimen. Potential 
as well as current leads are fitted to the lat ter  so that  the power supplied 
can be measured, This is usually of the order of a few miUi-watts. 
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8.2. Measurement of the Temperature Difference 

The measurement of the temperature difference along the rod due to 
a given heat flow from the free end, was in the earlier experiments made 
with one thermometer  (e.g. de Nobel 1951). This was attached near the 
heater and the fixed end of the rod was assumed to be at the temperature 
of the helium bath, which could be found with a knowledge of its vapour 
pressure. Whilst this assumption is sometimes quite justified, it requires 
an almost perfect thermal contact at  Vhe cold end and this is in many cases 
extremely difficult to make. A more satisfactory method of measuring 
the temperature gradient is to use two thermometers fixed a few centi- 
metres apart  along the rod. This is done in most of the recent  work. 
The thermometers are either helium gas thermometers or electrical 
resistance thermometers and the measuring device either records the 
absolute temperature of each thermometer,  or a differential arrangement 
~s used which gives the temperature difference directly. 

8.3. Resistance Thermometers 

Electrical resistance thermometers have been used by de Nobel (1949, 
1951) and by Allen and Mendoza (1948). De Nobel (1949) used lead 
resistance wire for measurements in the liquid hydrogen range. These 
were calibrated against a platinum resistance thermometer.  For experi- 
ments in a magnetic field they were calibrated in tha t  field against the 
vapour pressure of hydrogen. Allen and Mendoza, in the liquid helium 
range have used phosphor-bronze wire wound on copper formers. At each 
temperature where a reading was required the thermometers were 
calibrated at four or more points about 0-01 ° apart, against the helium 
vapour pressure. Temperature differences of 0.01 degrees were used. 
They state that  two or three temperatures could be measured to 2% in 
a three to four hour run. For experiments below 1 ° K carbon resistance 
thermometers have been used (Olsen and Renton 1952). 

8.4. Gas Thermometers 

The advantage of electrical resistance thermometers is tha t  the 
external equipment required is readily availab]e--a potentiometer or a 
br idge--and that  they are probably simpler to make and to fit than are 
gas thermometers. Nevertheless gas thermometers are widely used. 
The most important  reason for this is tha t  the calibration is unaffected 
by a magnetic field and hence they are particularly useful in the investi- 
gations of superconductors and magneto-resistive effects. Another 
advantage is that  the number of calibration points required is very small 
because the gas can be assumed to obey the ideal gas laws so long as the 
pressure is not too high. Hence a calibration at the boiling point of 
liquid hydrogen is usually sufficient for readings between 10 ° and 40 ° K, 
and one at the boiling point of liquid helium for readings between 2 ° and 
10 ° ](, although these can be supplemented by extra calibrations against 
vapour pressure of the bath at various temperatures. A correction must 
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be applied to take into account the ' dead '  or external volume of the 
gas thermometer system and for this reason the connecting capillary 
and the dead space at the top of the manometer used to measure the gas 
pressure should be made as small as possible. In this way the corrections 
can be greatly reduced. To measure temperature differences directly, 
it is simple to connect the two thermometers to opposite sides of a 
differential manometer, a U-tube containing butyl phthalate usually 
being used. The difference in levels then gives a direct indication of the 
temperature difference. Such an arrangement also cancels out certain 
small correction factors. 

When used in this way it is important that  both thermometers and 
their tubing have exactly the same dimensions. This is usually achieved 
sufficiently by careful machining and measurement although Andrews, 
Webber and Spohr (1951) have gone farther and have etched the copper 
thermometer bulbs and have then adjusted a moveable piston in a cylinder 
in one thermometer circuit until no difference in pressure was observed 
between the two thermometers when the temperature was varied from 
nitrogen to room temperature. I t  is of course important, particularly 
if the external volume is unavoidably large, to protect it from sudden 
changes of temperature. The absolute pressure in each thermometer 
can be measured by joining a third arm, which is kept continuously 
pumped, to the centre of the differential manometer. Systems on these 
lines are used by Hulm, Andrews, Webber and Spohr, Berman and 
MacDonald, Estermann and Zimmerman, Mendelssohn and Olsen, and 
Mendelssohn and Rosenberg. The difference in levels is measured on a 
scale either directly or through a telescope. Hulm (1951) illuminated 
~he meniscuses from behind and measured the position of each on a travel- 
ling microscope and could measure temperature differences of the order 
of 0.01 degree to about 1%. Estermann and Zimmerman (1951) had an 
interesting arrangement in which a calibrated adjustable bellows in one 
limb of the manometer was adjusted until the difference in levels in the 
manometer was zero. From the amount of movement required the 
temperature difference could be calculated. This method had the 
advantage that  no external volume correction was necessary. They 
were not able, however, to measure the absolute temperature of the 
thermometers 'and they had to estimate the temperature of the specimen 
from the temperature of the helium bath. This necessitates having a 
very good thermal contact between the bath and the specimen. 

8.5. Thermal Contact with the Specimen 

The attachment of the specimen to the thermometers occasionally 
causes difficulty, especially if the metal will not take hard or soft solder. 
In this case it is sometimes possible to copper plate the specimen and to 
soft solder on to this plating. This has been done for the aluminium 
specimens of Webber, Andrews and Spohr (1951). Another technique 
is to spot weld a small platinum ring t o  the specimen and to solder a 
copper contact to this ring. The copper is then soldered with Wood's 
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metal to the thermometer. Mendelssohn and Olsen have used this method 
for tantalum and niobium. Small clamps can be used if soldering 
techniques are not possible and in this case thermal contact can be 
improved by coating the clamp and specimen with glycerol or celluloid 
cement before tightening it up. 

8.6. Method of Mounting for Magnetic Measurements 

Most workers have mounted their specimens vertically in the apparatus. 
I f  magnetic measurements are being taken, however, it is often convenient 
to mount it horizontally, because readings can then be taken in both a 
transverse and in a longitudinal field with the same type of magnet. 
I f  the specimen is vertical two different magnets will be required--a 
solenoid for the longitudinal field and an ordinary magnet for the 
transverse field. 

8.7. Attainment of Steady Temperatures in the Full Range up to 90°K 

In order to obtain results over the full temperature range it is necessary 
to obtain steady temperatures not only in the helium, hydrogen and 
oxygen regions, but also in the ranges 4-10 ° K and 20-60 ° K. Tempera- 
tures in the 4-10 ° K region are Obtained fairly easily if a Simon expansion 
liquefier is used. The gas is not expanded fully to atmospheric pressure 
but is allowed to expand slowly. By controlling this expansion with a 
needle valve any temperature between 4 and 10°K can be maintained 
(MacDonald and Mendelssohn 1950). For temperatures above 20°K a 
small heater is fitted either to the fixed end of the specimen or around the 
high pressure pot of the liquefier and this is used to raise the temperature 
of the specimen by any desired amount above 20 ° K. This method may 
also be used for temperatures between 4 ° and 10 ° K. 

Further details covering the experimental technique of gas thermometry 
are given by Hulm (1950) and Berman (1951 a). 

8.8. Method of Wilkinson and Wilks 
A useful method of determining the mean conductivity of a specimen 

has been given by Wilkinson and Wilks (1948). One end of the specimen 
is i~ contact with liquid helium but the other one is kept at the tempera- 
ture of liquid hydrogen. The heat input is found by measuring the 
amount of liquid helium which is evaporated. No heater or thermo- 
meters are required. This is a particularly useful technique when 
information is needed regarding materials to be used in the construction 
of low temperature apparatus. 

8.9. Technique below I°K 

Measurements in the adiabatic demagnetization region present new 
problems both because of the limited range of thermometers available, 
and because of the need for very small heat input. 

Heer and Daunt (1949 a) used the specimen as a connecting, link 
between a large and a small pill of paramagnetic salt. These were 
demagnetized to slightly different temperatures, and the heating up rate 

r .~.  SUPPL.--JAN. 1953 F 



D
ow

nl
oa

de
d 

B
y:

 [S
w

et
s 

C
on

te
nt

 D
is

tri
bu

tio
n]

 A
t: 

20
:1

7 
21

 S
ep

te
m

be
r 2

00
7 64 J . L .  Olsen and H. M. Rosenberg on the 

of the smaller pill was observed with the specimen in the normal and in 
the superconducting state. Goodman (1951) also used a two-pill 
technique, but with pills of equal size. The rate at which temperature 
equilibrium was established between the two pills was observed. He was 
able to allow for the effects of contact resistance between salt and speci- 
men by making measurements on several specimens with a wide range 
of conductivities. 

Olsen and Renton (1952) had only a single pill and used a technique 
similar to that  normally used at higher temperatures. Carbon thermo- 
meters painted directly on the specimen measured the temperature 
gradient established by a small electric heater at one end of the specimen. 
It  was of course necessary to work with very small heat inputs to avoid 
heating the paramagnetic salt too rapidly. One advantage of this 
technique is that  it allows measurement of approximately isothermal 
magnetic hysteresis cycles. 

8.10. Superconducting Heat Switch 

One of the problems of very low temperature work is the need for a 
method of making and breaking thermal connection between different 
parts of an apparatus. The normal method using an exchange gas 
ceases to work at temperatures below about 0.7 ° x when even helium has 
too low a vapour pressure to conduct heat effectively.. The use as a 
heat switch of a superconductor where Ku and K 8 are widely different 
has been suggested independently by Gorter (1948), Heer and Daunt 
(1949 a, b) and by Mendelssohn and Olsen (1950 a). 

Darby, t tat ton,  Rollin, Seymour and Silsbee (1951) have  successfully 
used this type of heat connection in experiments on two stage demag- 
netization. The aim in designing a heat switch will be to have as high an 
on/off ratio of conductances as possible. This ratio will be very nearly 
equal to the ratio at the temperature, T, of the hot end. Ks/K  ~ will vary 
at least as (T/Tc) 2 at the lower temperatures, and it is thus clearly 
desirable to have as low a value of T as possible. 

Darby et al. used lead as the connecting link between a pill of para- 
magnetic salt at 0.25°K and the pill it was desired to demagnetize to a 
low temperature. They were able to obtain a temperature of approxi- 
mately 3× 10-a°K by demagnetizing from a magnetic field of only 
4300 gauss, and 10 -a °K from a field of 9000 gauss. A heating up rate 
of only 1 erg/min was obtained and it was possible to keep the tempera- 
ture below 10 -2 °K for 40 minutes. I t  is of interest to note, as the original 
paper shows, that  this heating up rate may be considered a cor/firmation 
that  KedK~n drops more rapidly that  T 2 at the lowest temperatures. 

§ 9. Co~cLusIo~ 

In  concluding this paper we should like to list some of the programmes 
of experimental work on thermal conductivity which we regard as "the 
most immediately desirable. 
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(a) An extension of the work on the thermal conductivity of the elements 
in the highest state of purity, preferably in the form of single crystals. 
This is particularly important for elements with simple atomic and 
crystalline structures where the theoretical predictions can be more easily 
evaluated. 

(b) An investigation ot" the effect of known amounts of impurity and 
an examination of how this alters the lattice and electronic conductivities. 

(c) An investigation into the effects of mechanical and heat treatments 
and the correlation, between the change in the thermal conductivity and 
the mechanical properties of the metal. This is of course connected 
with the need for similar research on the electrical conductivity. 

(d) Further measurements on anisotropic single crystals. 
(e) Further data concerning the change of thermal and electrical 

conductivities, and of the Lorenz number, in a magnetic field. 
(f) Further experiments on superconductors and superconducting 

alloys which will give more data on the K J K ,  relationships. 
Experiments on these lines will yield va]uable information on electron 

and phonon scattering mechanisms. 
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