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The Thermal Conductivity of Dielectric Solids at Low Temperatures 
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§ 1. INTRODUCTION 

THE measu remen t s  of t h e r m a l  conduc t iv i ty  of dielectric solids have  not,  
unt i l  recent ly ,  been sufficiently extensive  for  detai led compar i son  be tween  
t heo ry  a n d  exper iment  to be made.  I n  the  las t  few years,  however,  a 
considerable a m o u n t  of  work  has  been  carr ied out  in Oxford  and  i t  now 
seems a sui table  t ime  to  review the  present  s t a te  of  knowledge and  t o  
describe the  types  of  expe r imen t  which are being carr ied out.  F r o m  the  
theoret ica l  point  of  v iew the  mos t  in teres t ing effecks occur a t  fa i r ly  low 
t e m p e r a t u r e s  ; the  t e m p e r a t u r e  range  of in teres t  is re la ted  to  the  specific 
hea t  and  to  the  size of  the  specimen and  in mos t  cases lies below room 
t e m p e r a t u r e  and  ex tends  down to the  lowest  t e m p e r a t u r e s  a t ta inable .  

I n  this pape r  the  exper imen ta l  t echniques  used will not  be  described ; 
t h e y  are usual ly  the  same as those  men t ioned  b y  01sen and  Rosenberg  i n  
the  compan ion  paper .  Reference  will only  be  made  to some special 
methods .  

As the  work  descr ibed here  will not ,  on the  whole, be discussed in 
chronological  order, an  outl ine will first be g iven of  the  ac tua l  deve lopmen t  
of  t he  subjec t  over  the  las t  f o r t y  years .  
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§ 2. HISTORICAL DEV]~LOPME:NT 

2.1. Dielectric Solids in General 

As a result of numerous measurements on dielectric crystals and on 
amorphous solids, Eueken (1911 a, b) concluded that, in general, the 
conductivity of single crystals increases with decreasing temperature while 
that  of amorphous solids decreases. Most of the measurements were 
made at the steam point, ice point and at liquid air temperature, with a 
few measurements at the boiling point of liquid hydrogen. In this 
temperature range the conductivity was found to be roughly inversely 
proportional to the absolute temperature for crystals and in the case of 
amorpbous solids to be roughly proportional to the specific heat. 

These different variations with temperature were explained by Debye's 
~heory (1914), according to which the heat is transported by  travelling 
elastic waves which are coupled together on account of their anharmonicity. 
In crystals the waves are scattered by regions of differing density arising 
from thermal motion and Debye calculated the attenuation of the waves 
produced by  this scattering. From the dependence of attenuation on 
~emperature he derived a variation of conductivity which is in agreement 
with Eucken's experiments. 

More recent theories lead to the same temperature variation at 
sufficiently high temperatures but  show that at low temperatm'es the 
scattering of the waves falls off more rapidly. 

2.2. Crystals 
In Peierls' theory of heat conductivity of crystals (1929) the normal 

modes of a perfect lattice are quantized ; the quanta of vibrational energy 
are now called phonons. Thermal resistance is due to a certain type of 
collision between phonons (Umklapp processes) and Peierls showed that 
the probability of such collisions falls off exponentially at low temperatures, 
leading to a corresponding exponential increase in the conductivity. De 
Haas and Biermasz (1935) carried out experiments designed to test the 
validity of Peierls' theory. Although they found that the conductivity 
of quartz in the liquid hydrogen range increases more rapidly than the 
inverse of the temperature, their most-interesting result was that  in the 
helium range the conductivity actually decreases with decreasing tempera- 
ture and must, therefore, pass through a maximum at about 10 ° ~(. 

Peierls suggested that  this behaviour was due to scattering of the lattice 
waves at the boundaries of the crystal and the consequences of this 
suggestion were developed by Casimir (1938). He showed that  such a 
scattering would lead to a conductivity, at sufficiently low temperatures, 
proportional to the diameter of the crystal and to the cube of the 
temperature. The later experiments of de Haas and Biermasz were 
almost entirely confined to the s tudy of this effect and although exact 
agreement with the theory was not obtained, the results indicated that  
the size and temperature dependence calculated by  Casimir might be 
accurately obeyed at temperatures considerably lower than those at 
which measurements had yet been made. 
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Dielectric Solids at Low Temperatures 105 

Mean free path treatments of thermal conductivity have been given by  
Pomeranchuk (1941 a, b ; 1942) and by Klemens (1951). Exact  expres- 
sions are found  for the variation of conductivity with temperature by  
picking out  the processes which are chiefly responsible for limiting the 
phonon mean free path. It  is then possible to calculate the conductivity 
to be expected when two or more processes combine in limiting the mean 
free path. (Even in an ideal crystal, there must be at least two such 
processes in the region of the conductivity maximum.) 

Recent experiments (Berman, Simon and Wilks 1951) have shown 
that  the exponential increase in conductivity predicted by Peierls can be 
observed for sufficiently pure crystals over,a relatively small temperature 
range. There are, nevertheless, considerable discrepancies between the 
expected variation of conductivity and that  found experimentally and 
experi .merits now in progress in Oxford are designed to investigate these 
discrepancies. 

The present theories enable us to predict the conductivity as a function 
of temperature, provided that we know one value at "a comparatively high 
temperature. Figure 1 shows the conductivity of ideal sapphire crystals of 
two different diameters, calculated according to Klemens' theory ;  the 
conductivity actually found is also shown. It  is evident that the greatest 
discrepancies occur in the region of the conductivity maximum but, even 
for real crystals, the conductivity reaches values comparable with tho~e of 
pure metals at their maxima. 

2.3. Amorphous Solids 

Several observers have reported values for the conductivity of glasses 
which indicate that  below liquid air temperatures the conductivity begins 
to fall off more slowly than the specific heat. The explanation of  this 
was given by  Kittel  (1949) and the theory was developed in detail by  
Klemens (1951) who showed that at  sufficiently low temperatures the 
conductivity should be proportional to the absolute temperature although 
the specific heat is proportional to the cube of the temperature. This 
temperature variation has been confirmed for several glasses and for some 
plastics (Bijl 1949, Berman 1951). 

Figure 2 shows the measured values of the thermal conductivity of quartz 
glass together with the curve calculated by Klemens (for which the 
empirical constants have been found by comparison with experiment) ; 
except at the very lowest temperatures the specific heat varies as curve I I  
in the figure, so that  the difference between the present theory and an 
extrapolation of Debye's relationship is clearly seen. 

§ 3. T]~EORY OF THE CONDUCTIVITY OF IDEAL CRYSTALS 

For an ideal crystal we assume there are only two types of process 
which give rise to thermal resistance : Umklapp processes and boundary 
scattering. The resistances due to these two causes are only comparable 
over a small temperature range which, for  crystals of a few millimetres 
diameter, is in the neighbourhood of onethirtieth of theDebye characteristic 
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temperature. At higher temperatures the conductivity is almost entirely 
determined by Umklapp processes and at lower temperatures by boundary 
scattering• These three temperature regions will be treated separately 
in the following discussion. 

3.1. The Region above the Conductivity Maximum 

Although Debye's theory has been superseded, it introduced important  
concepts which are still valid. Debye treated a crystal as a continuum in 
which heat is carried by travelling elastic waves of a single frequency. 
He pointed out that  if the waves were purely harmonic there would be 
no coupling between waves ; consequently attenuation of the waves by 

Fig. 1 
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Diegectric Solids at Low Temperatures 107 

mutua l  scat ter ing could not  occur. I t  would not,  therefore,  be possible 
to  set up a t empera tu re  gradient  within a crystal  so tha t  there  would be 
no definable thermal  resistance. The  lat t ice vibrat ions must  be assumed 
to  be anharmonic  to  account  for thermal  expansion and  Debye  explained 
the  required coupling between the waves in te rms of this  anharmonic i ty .  

As a measure of  the scattering, Debye  defined the mean  free p a t h  l of a 
wave as the  distance which the  wave travels  before its in tens i ty  is reduced  
to  1/e of its initial value. The  thermal  conduct ivi ty ,  K, is t hen  given b y  
the  equat ion : 

K = ¼ c v l  . . . . . . . . .  (1) 

where c is the  specific heat  per  unit  volume and v is t he  wave velocity.  

Fig. 2 
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Debye  supposed tha t  a wave is sca t te red  when it  passes th rough  regions 
whose densi ty  and  elastic constants  differ f rom the  average value through-  
ou t  the  crystal .  These dens i ty  variat ions result  f rom the  anharmonici t ies  
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in the thermal motion of the lattice and, for purposes of calculation were 
considered to be static. This assumption is only justified at h igh  
temperatures, when the density variations are not correlated with the 
scattered waves. The calculation showed that  the mean free path is 
inversely proportional to the absolute temperature and, since the wave 
velocity is nearly independent of temperature, the thermal conductivity 
must be inversely proportional to temperature for temperatures where 
the specific heat is constant. 

In Peierls' theory (1929, 1935) a crystal is treated as a lattice of atoms 
rather than a continuum. The coupling between normal modes of vibra- 
tion is ascribed to anharmonicities arising from third and higher order 
terms in the potential energy of a displaced atom. The part played by these 
terms is analogous to that  of collisions in the theory of a perfect gas ; 
though introducing only a small perturbation of the motion they are 
responsible for the coupling between the normal modes which is essential 
in producing thermal equilibrium. In Peierls' theory the normal modes 
of vibration are quantized and, by analogy with the photons of radiation 
theory, these quanta are now termed phonons. For a phonon associated 
with an angular frequency ¢o and wave number K, ?/¢o gives the energy 
while hK behaves rather like a momentum. 

In the presence of a temperature gradient the phonon distribution differs 
from that  corresponding to the equilibrium distribution at uniform 
temperature--the Planck distribution. Collisions between phonons tend 
to restore the equilibrium distribution and the rate of the restoring process 
determines the thermal conductivity. Collisions are possible if the three 
values of o~ and K obey the equations : 

(.Oi ~- (02= Oj3 . . . . . . . . .  (2) 

and KI-I-K~=K 3 . . . . . . . . .  (3) 

which are conditions corresponding to the conservation of energy and 
momentum. Equation (2) states that  after a collision the resulting wave 
or waves still carry the same energy as before and eqn. (3) implies that  
this energy is still flowing in the same direction, Such collisions do not 
in themselves give rise to  a thermal resistance. Peierls also showed that,  
for a discrete lattice, collisions are possible in which eqn. (3) does not hold 
but is replaced by 

2~c  
K1 -~- K2---~K3-~- T . . . . . . . .  (4) 

where a is the lattice constant and e is a unit vector, the possible directions 
of which depend on the crystal symmetry. Equation (4) implies that  the  
direction of flow of the energy is changed after a collision and, as c can 
take up one of several directions (e.g. six directions parallel to the axes of a 
cubic crystal), the result of such collisions is much the same as if the waves 
were scattered at random. This type of collision, which Peierls called an 
Umklapp process (in the following discussion the abbreviation U-process 
will be used), gives rise to thermal resistance. 
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It  is convenient to use the concept of mean free path, as in Debye's  
theory, but  since the waves have been replaced by phonons, eqn. (1) is 
rewritten as 

, ~ = ~ c v l  . . . . . . . .  (5) 

by analogy with kinetic theory. For the case being considered 1 is the 
mean free path for U-processes. I t  is now necessary to take into account 
the contributions to the right hand side of (5) from phonons corresponding 
to waves of all frequencies up to the Debye limit and of three possible 
polarizations, so that eqn. (5) should be written : 

,~--~ZCK~VGKj l~j . . . . . . . .  (6) 
Kj 

where j denotes the direction of polarization and v a is the group velocity. 
At sufficiently high temperatures the contribution to the specific heat, 
cxi, is the same for all waves and is independent of temperature. The 
mean free path is inversely proportional to the rate of loss of energy of a 
wave, which Peierls showed to be proportional to its own additional energy 
a n d  to the intensities of the other waves with which it can interact. The 
mean free path is thus inversely proportional to the intensity of the 
other waves taking part and at high temperatures all the intensities are 
proportional to T, so that  l o : l / T  a n d  the conductivity is inversely 
proportional to the absolute temperature, which is the relation also deduced 
by  Debye. 

For treating the low temperature conductivity Peierls did not use a 
mean, free path method, but pointed out that eqn. (4) implies that  the 
phonons must have a minimum energy for an Umklapp process to occur. 
He further showed that as a rough criterion we may take this threshold 
energy as ]c8/2, where k is Boltzmann's constant and ~ is the Debye 
characteristic temperature. The intensity of excitation of such phonons 
is proportional to 1/(e°/~--1), which at low temperatures approaches the 
value e -°l~T. The probability of U-processes therefore contains the term 
e -°/u~ and the thermal resistance is proportional to f ( T )  e -°/ST, where at 
suffieient]y low temperatures the function f ( T )  behaves as a power of T. 

Experiments confirm the main features of the temperature variation 
predicted by  Peierls, but  comparison is difficult when several scattering 
mechanisms have to be taken into account. Mean free path treatments of 
thermal conductivity have, :however, been given by Pomeranchuk 
(1941 a, b ; 1942) and Klemens (1951), and these are more easily applied 
to discussions of experimental results. 

The expressions for the conductivity found by Pomeranchuk differ 
considerably from those of other authors mainly because of the long mean 
free paths which are assumed for long waves. At high temperatures four 
phonon processes are considered essential for ensuring a finite conductivity 
and for T>>8 the deduced conductivity is proportional to T -a/2. At 
somewhat lower temperatures the effect'of the long free paths of lbng waves 
is to make the conductivity weakly size-dependent at temperatures 
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considerably higher than those for which Casimir's relation holds. The 
conductivity is proportional to L 1~4 T-a~4 where L is the smallest dimension 
of the crystal. 

At still lower temperatures Pomcranchuk shows that  the form of the 
conductivity-temperature relation is very sensitive to the concentration 
of defects.in the crystal. There is a range of temperature where there is a 
true conductivity, independent of size, only for crystals of sufficient 
purity. For these the conductivity is inversely proportional to the 
temperature and to the defect concentration. I t  is not shown whether 
Che conductivity of an ideal crystal would vary exponentionally with 
the temperature, as predicted by Peierls. For crystals with a defect 
concentration greater than a certain minimum there should exist a tempera- 
ture region in which the conductivity is independent of temperature, but 
is again proportional to L i/4. Finally, at sufficiently low temperatures 
Casimir's relation will hold for all crystals. 

There does not seem to be any experimental confirmation of even the 
more striking of P0meranchuk's conclusions, such as the size dependence 
at  high temperatures and the temperature independent conductivity. I t  
is probable that  the dependence on size at relatively high temperatures 
has not been looked for under conditions which would enable an exact 
comparison to be made. Pomeranchuk remarks that  a temperature 
independent conductivity should be observed in diamond ; for an impurity 
concentration of 4×  10 -a this would extend from 54 to 380 °. K. The 
existence of such a temperature independent conductivity between 24 and 
340°K was deduced from the measurements of Eucken (1911 c) and of 
de Haas and Biermasz (1938 a). These experiments are discussed in 
§ 5.1 where it is pointed out that  it does not seem justifiable to draw this 
conclusion. 

Pomeranchuk considers that  the chief contribution to the conductivity 
of crystals comes from longitudinal phonons of long wavelength. In order 
to  obtain numerical agreement with experiment the calculated mean free 
path has to be divided by a factor of 100. Klemens, however, while he 
uses Pomeranchuk's expressions for the mean free paths for various 
scattering processes, considers all processes tending to restore equilibrium, 
including those in which momentum is conserved. He shows that  a 
longitudinal mode of vibration tends to return to its equilibrium value 
mainly by means of interactions with transverse waves of about the 
same frequency and a low frequency transverse mode by interactions with 
modes of frequency lcT/h. I t  is thus shown that  3-phonon processes are 
sufficient for producing a finite conductivity and the contribution to the 
conductivity from longitudinal modes is of similar magnitude to that  from 
transverse modes in the case of crystals. The conductivity is not 
size-dependent except where Casimir's relation holds. According to 
Klemens the resistance due to Umklapp processes is proportional to 
T -1 e -°]2r. As will be discussed in § 5.1, it is difficult to verify this power 
of temperature by experiment. 
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I t  should be realized that  it is only the temperature variation of con- 
ductivity which has been calculated and not its absolute magnitude. The 
latter obviously depends on the strength of the coupling between the modes 
of vibration or on the number of collisions between phonons, which is 
determined by the anharmonicities of the interatomic forces, and this is 
difficult to deduce from other data. Van Vleck (1941 a) has treated a 
similar but somewhat simpler problem in connection with paramagnetic 
relaxation in the alums ; namely the transfer of energy between lattice 
oscillators at  the same position in space but at different temperatures. 
The anharmonicity was derived from compressibility data and the tempera- 
ture was low enough for U-processes to be neglected. In this case thermal 
equilibrium is restored by processes represented by eqns. (2) and (3) ; 
as has been mentioned before, however, these processes alone do not lead 
to a thermal resistance. Even if a similar calculation could be made for 
thermal cOnductivity it would be difficult to obtain the necessary experi- 
mental data from which the anharmonicity could be derived for crystals as 
hard as sapphire and diamond but it may be possible in the ease of solid 
helium, which is very compressible. 

I t  will be seen that  the absolute value of the conductivity of dielectric 
crystals can be very high, yet in discussions of the Wiedemann-Franz law 
it is assumed that  the contribution of the lattice conductivity to the 
measured conductivity of monovalent metals, such as copper and sodium, 
is negligible. The justification for this is that  the presence of free electrons 
in metals provides an extra mechanism for scattering phonons so that  even 
in a pure metal the lattice conductivity is small at all temperatures, 
regardless of the degree of anharmonicity of the atomic forces. 

3.2. Boundary Scattering 

In his original paper Peierls drew attention to the conductivity of 
diamond which according to Eucken's measurements appeared (erro- 
neously) to be almost independent of temperature. Since the character- 
istic temperature is very high, the measurements extended to lower 
values of T/O than for other crystals. Peierls suggested that under these 
conditions, where U-processes are very rare, reflection of the waves at 
the crystal boundaries is all-important so that  the conductivity, if 
defined in the usual way, would depend on the crystal size. 

In their first experiments to test Peierls' theory at low temperatures, 
de Haas and Biermasz (1935) found that  the thermal resistance of a 
quartz crystal increased with decreasing temperature in the liquid helium 
region. I t  was realized that  impurities in the crystal would give rise t~) 
a thermal resistance additional to that  caused by Umklapp processes, 
but Peierls had shown that  this resistance too should fall off at  low 
temperatures. 

Casimir (1938) worked out the consequences of Peierls' suggestion that  
scattering of the lattice waves at t h e  boundaries of a crystal becomes 
important at low temperatures. By assuming tha t  the interaction 

P.M. SUPPL.--JAN. 1953 I 
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between the waves can be completely neglected Casimir compared a 
crystal to a hollow space filled with electromagnetic radiation. He  
calculated the  flow of heat in a crystal under these conditions by  consider- 
ing the case to be similar to the flow of radiation down a tube with 
diffusely reflecting walls. Diffuse reflection was to be expected because 
in the crystals which had been measured the irregularities of the walls 
were certainly larger than the wave-lengths of the lattice waves dominant 
in heat conduction at the temperatures considered. (If the reflection 
were specular the heat flow would be independent of length, which is 
not in agreement with experiments.) There will then be a temperature 
gradient along the walls when there is a flow of heat along the crystal. 

On the assumption that all phonons behave in the same way on re- 
flection Casimir deduced that the flow of heat is proportional to the 
temperature gradient, to the cube of the absolute temperature and to 
the cube of the radius of the crystal (or to the cube of the length of side 
for a crystal of square cross-section). I f  a heat conductivity is defined 
from this relation it will evidently be proportional to the radius of the 
crystal, but  it must be emphasized that this is not a true conductivity. 

On the more exact theory of Klemens account is taken of the interaction 
between the  lattice waves, even when these are not of the Umklapp type. 
Since such collisions alone do not give rise to thermal resistance the effect 
of boundary scattering is the same as that  calculated by  Casimir. 

Casimir's result is that  the conductivity is given by  

K----2.31 × 103RpA~/~T 8 Watts/cm deg . . . . .  (7) 

where R is the radius of the crystal and p is a dimensionless quanti ty 

equal to the r a t i o -  - - - - -  ---(Zv~.,~)/(Zvi---)) 2/~," ( - - ) d e n o t e s  the mean value 
~ J g / ~  y J  

over all directions. A is the constant in the expression c~--AT ~, for the 
specific heat per unit volume at low temperatures according to Debye's 
theory. The factor p occurs because different mean velocities are 
required for evaluating the specific heat and the energy flow. For a 
crystal of square cross-section of side d, R is replaced by  0.56d. 

I t  is very convenient to discuss the effect of boundary scattering by  
expressing the conductivity in terms of the phonon mean free paths, 
as has been done previously. I f  the conductivity is equated to ½cvl, 
then it is possible to calculate the value of I which will give the same 
conductivity as that  derived by  Casimir and given by  eqn. (7). From 
Debye's theory both the specific heat and, therefore, the mean wave 
velocity can be expressed in terms of 0, M and p, where M is the mean 
atomic weight in the crystal and p is ~he density. I f  p is taken as 1.4 
(which, as Casimir shows, is about the value it has for most crystals) 
then 1 is almost exactly equal to 2R, the diameter of the crystal. 

I t  will be noticed that for boundary scattering, acting alone, it is 
possible to calculate the absolute magnitude of the conductivity since, 
unlike Umklapp processes, the strength of coupling between the waves 
is not involved. 
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3.3. The Combined Effect of Umklapp Processes and Boundary Scattering 

For an ideal crystal Umklapp processes are dominant in determining 
the conductivity at high temperatures and boundary scattering is 
dominant at low temperatures. Over a certain range of temperature 
both processes must be considered, but this range is small as both types 
of resistance vary rapidly with temperature. In order to calculate the 
conductivity when more than one scattering process is important it is 
necessary to insert into eqn. (6) the value of the mean free path lKj (for 
phbnons Kj) resulting from the combined scattering processes, and then 
to carry out the summation, over all values of K and j. Simple addition 
of the thermal resistances due to each scattering process, oonsidered as 
acting separately, will in general only lead to the same result if all 
scattering processes are independent of K and j. 

Klemens has in this way derived a combination formula which gives 
the conductivity when Umklapp processes and boundary scattering are 
both important. The results calculated for ideal sapphire crystals are 
shown in fig. l, together with the values which would be obtained by 
adding t h e  resistances which the two processes would produce if they 
acted separately. In the neighbourhood of the maximum the difference 
can amount to about 300 .  

3.4. Other Factors which may affect the Conductivity 

Measurements have been made of the thermal conductivity of som~ 
dielectric solids in the region of specific heat anomalies. Eucken and 
Schr6der (1939), Gerritsen and van der Star (1942) and v. Simson (1951) 
have measured HBr, CH 4 and NH4C1 respectively, in each o£ which the 
anomalies in the solid state a re  associated with the rot/~tional energies 
of the molecule or parts of the molecule. Corresponding anomalous 
increases in the measured heat conductivities have been found, but no 
detailed theoretical work has been carried out on this subject. 

The contribution of the spins in a paramagnetic salt to heat conduc- 
t ivity has been treated theoretically by FrShlich and Heitler (1936) and 
by Akhieser and Pomeranchuk (1944). Pomeranchuk (1941 c) has als(~ 
discussed the effect of the magnetic spectrum on the phonon conductivity. 
An excited ionic level is considered not localized in the lattice but the 
excitation energy is exchanged with other ions. The thermal con- 
ductivity associated with the motion of the excitations is determined at 
low temperatures by their mutual scattering and also by the effect of 
impurities. Both calculations show that  if only mutual scattering is 
important this ' exciton'  conductivity increases with decreasing temp- 
erature. At sufficiently low temperatures it should therefore become 
greater than the phonon conductivity which decreases as the cube of the 
temperature. Akhieser and Pomeranehuk estimate that  in potassium 
chl;ome alum the two contributions would be about equal at 0.02 ° K. 
The calculation only gives the order o£ magnitude of the ratio o£ the 
two contributions (e.g., in the expression for the lattice specific heat 

I 2  
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114 R. Berman on the Thermal Conductivity of 

C~464(T /0 )  3 cal/mole the numerical factor is omitted) but as the ratio 
varies as T 4 the calculation will certainly give the order of magnitude 
of the temperature at which they become equal. 

The only experiments in which the contribution of the spins might 
have been noticeable are those of Garrett (1950) on potassium chrome alum. 
Even here, however, the lowest temperature at which measurements 
were made is about ten times larger than that  at which Akhieser and 
Pomeranchuk estimate ghat this contribution would be equal to the 
phonon conductivity, and, indeed, no effect was found. 

§4. T~E T~EO~¥ OF IMPERFECT CRYSTALS 

As can be seen from fig. l,  even  the dielectric crystal with the highest 
conductivity so far measured, synthetic sapphire, has a conductivity 
which, near the maximum, is only about one eighth of that  to be expected 
for a perfect crystal. This can be attributed to imperfections in the 
crystal, which will produce extra scattering of the phonons. Various 
types of  imperfections may occur and mention will be made here of the 
effects of mosaic structure and of small scale defects, such as impurity 
atoms or displaced atoms. 

4.1. Small Scale Defects 
A single defect alters the elastic propertie s of the crystal over a region 

of the order of size of a unit cell ; for long waves the scattering will obey 
Rayleigh's law and the mean free path of a phonon is proportional to 
1/K 4. I f  there were no coupling between waves the mean free path of 
the longest waves would tend to infinity, giving rise to an infinite con- 
ductivity. Peierls showed that  the anharmonic coupling leads to a 
finite conductivity because it effects the transfer of energy away  from 
these long waves by processes represented by eqns. (2) and (3). As a 
result, the thermal resistance due to small defects is proportional to the 
absolute temperature at low temperatures. This result is also obtained 
by Klemens. 

For short waves or for defects of large extent Rayleigh's law is not 
applicable; the scattering is less freqtmney dependent and becomes 
almost frequency independent at the highest frequencies. Hence the 
resistance due to defects is proportional to the temperature only at low 
temperatures. 

4.2. Mosaic Structure 
From x-ray observations i t  is evident that  the alignment of the atomic 

planes is not perfect even in single crystals. A broadening of the 
diffraction pattern indicates that  the crystal is divided into small regions 
which are inclined at very small angles (of the order of seconds) to 
neighbouring regions. Pomeranchuk (1942) has calculated the phonon 
mean free path when it is limited by such disorientations and has shown 
tha t  i t  is proportional to 1/K 2. At low temperatures the thermal 
• esistance due to this cause is proportional to 1/T. 
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§5. EXPERIMENTAL WORK ON THERMAL CONDUCTIVITY 
OF PURE CRYSTALS 

Many authors have reported measurements on particular crystals at 
various temperatures and instead of discussing these in chronological 
order it would seem to be more useful to describe them according to the 
information they yield when considered in the light of present knowledge 
about thermal Conductivity. 

5.1. The Umklapp Proces8 

I t  is now known that it is necessary to measure thermal conductivity 
at temperatures between 0/20 and 0/10 in order to observe the exponential 
variation of conductivity predicted by Peierls for low temperatures. 
This exponential rise should be observable at still lower temperatures 
in ideal crysVa]s with diameters of the order of a millimetre, bu t  seems to  
be masked by  lattice imperfections at temperatures somewhat higher 
than those at which boundary scattering should be appreciable. 

For the crystals measured by  Eucken the temperature of liquid air is 
too high for the conductivity to deviate appreciably from the lIT law, 
except for diamond. Although the values differed considerably from 
crystal to crystal Eueken found the average value of KSa/K~ 3 to be of the 
order of 3-4. A few measurements were made at the  boiling point o f  
liquid hydrogen and for rock salt and for quartz the ratio K~/KSS was 
greater than t0, but  was only about 3 for sylvin. 

The diamond specimen which Eucken used in his experiments (1911 c} 
was not large enough for the temperature gradient to be determined in 
the usual way and the overall resistance which was measured included 
some contact resistance at either end of the crystal. He  showed that  this 
could lead to considerable error in the conductivity at low temperatures 
by measuring a rock-salt crystal in the same way and comparing the 
values found with the results of his more accurate method. Although it 
could be seen that the conductivity of diamond must be very great at 
room temperature it was not evident how the conductivity varied with 
temperature. 

Although some of the results obtained by  Eucken provided data for  
comparison with Peierls: theory, systematic measurements at low 
temperatures were very necessary. De Haas and Biermasz started their 
series of experiments in 1935 by measuring the conductivity of a quartz 
crystal. Although they verified Eucken's ra t io  of K~/KS8 and found 
that the rise in conductivity continued certainly down to 15 ° K, they 
subsequently concentrated their attention on the unexpected variation 
of conductivity which they found to occur at liquid helium temperatures. 
For the alkali halides which de Haas and Biermasz measured (1937) the 
conductivity did not increase faster than inversely proportional to the 
temperature down to 15 ° K but  they again found that  the conductivi ty 
decreased in the liquid helium region. 
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I t  is probable tha t  the conductivity of the alkali halide crystals does 
not rise rapidly with decreasing temperature in a way similar to quartz 
because of the effect of small quantities of impurities. In  view of the 
recent papers of Krishnan and Roy (1951, 1952), in which it is shown 
that  the cubic anharmonicities in these crystals are absent, owing to 
the symmetry of the lattice, it would be very interesting if measurements 
were made on crystals sufficiently pure for the conductivity to be limited 
only by mutual  scattering of the phonons at temperatures where the 
exponential rise of conductivity would be expected, The relatively 
large thermal conductivity of KC1 at room temperature, where the effect 
of impurities is small, also suggests a small anharmonicity ; the phonon 
lnean free path, calculated from eqn. (5) is several times greater than  in 
quartz at the same temperature. 

De I:[aas and Biermasz also measured the conductivity of diamond 
(1938 a) ; most of the measurements were at temperatures below 20 ° x, 
bu t  they also measured one crystal at liquid air temperature to see 
whether the apparent temperature independence suggested by Eucken ' s  
results held. Below 20°]~ the variation of conductivity showed that  
boundary scattering was the chief cause of thermal resistance but the 
~,ralue at 89°K was the same as t he  extrapolated value at 24 ° ~:. This 
value was nearly ten times greater than Eucken's and de Haas ~nd 
Biermasz at t r ibuted this to a difference in the quality of the stones. 
They  concluded that  between 24 and 90°K the conductivity is independent 
of temperature. Although the values of de t laas and Biermasz ariel of 
Eucken differed by a large factor, so t h a t  the two sets of results could 
not  be combined, the impression let~ by these experiments seems to have 
been that  the thermal conductivity of diamond is independent of 
temperature between 24 and  340 ° K. .t~ecently measurements have been 
made on a specimen of gem quality between 2 ° K and room temperature 
(Berman, Simon and Wilks 1951) and it has been found that  the con- 
duet ivi ty  is not independent of temperature over the large range of 
temperature,  as previously assumed. There is certainly a smaller 
variation, over a much narrower temperature range (20-100 ° J~), than 
would be expected for an ideal crystal and this can be explained in terms 
of the effect of a very small concentration of clusters of impurities or other 
defects (Klemens 1952) 

As all the earlier measurements of thermal conductivity had only been 
made at fairly widely spaced temperatures or over small temperature 
ranges and had in many cases led to inconclusive results, it was considered 
necessary to make measurements over a considerably larger range. 
For this purpose an apparatus was designed (Berman 1951) to cover the 
temperature range f rom 2 to 90 ° ]~. For some substances the measure- 
ments have also been extended np to room temperature. Measurements 
have been made on single crystals of quartz, synthetic sapphire and 
diamond of various cross-sections; the conductivities of the largest 
crystal measured in each ease are shown in fig. 3. 
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Dielectric Solids at Low Temperatures 117 

Recently extensive measurements have been carried out on the thermal 
conductivity of solid helium at  different pressures (Wilkinson and Wilks 
1951, Webb, Wilkinson and Wilks, 1952) and some of the results are shown 
in fig. 4. Solid helium is very compressible and, unlike other substances, 
lends itself to the formation of crystals of substantially different density 
and 0 values by using quite moderate pressures. 

As has been discussed previously, the variation of conductivity with 
temperature is determined 'by the ratio T]O. The crystals which have 
been measured represent a wide range of 0 values, varying from about 25 ° 
for solid helium at the lowest pressures to over 2000 ° K for diamond, so 
that  the measurements provide a considerable amount of data for 
comparison with Peierls' theory. This comparison has recently been 

Fig. 3 
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Thermal eonductivities of quartz, synthetic sapphire and diamond. 
(Berman, Simon and Wilks 1951.) 

made (Berman, Simon and Wilks 1951) and figs. 3 and 4 are taken from 
the paper. I t  can be seen that  the thermal conductivities of these pure 
crystals behave in the same general way. Between temperatures 
equivalent to roughly 0/20 and 0/10 the conductivity fits a relation of 
the form K < T ~ exp (O/bT). I f  0 is taken as the Debye characteristic 
temperature corresponding to the specific heat per mean gram atomic 
weight then b has a value close to 2 for each crystal. Since the exponen- 
tial factor is so strong it is not possible to decide the power of T from the 
experiments. Over the relatively small temperature ranges for which 
this relation holds, the experimental results can be fitted equally well_ by 
different values of v and corresponding values of b not very different from 
2. Since it was only shown by Peierls that  b should be of the order of 
2 and since none of the crystals has a specific heat which exactly follows 
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Debye 's  law, the precise value of O/b which is found to  give the  best  fit 
with the conduct iv i ty  measurements  is not  a crucial tes t  of  Peierls'  
theory.  

The  mean free paths  for U-processes have  been calculated from the  
relat ion tc=½cvl and  are shown in fig. 5. The mean free pa ths  can he 
expressed by  relations of the form 

1----A exp (O/b'T) . . . . . . . .  (8) 

where the values of b' are 2.3 for solid helium, 2.7 for d iamond and 2.1 for 
sapphire and  A varies f rom 6 x  10 -s cm for helium to 1.4× 10 -e cm for 
diamond. Values for quartz  have  not  been der ived as the  crystal  is s t rongly 
anisotropic and the  conduct iv i ty  is difficult to  t rea t  theoret ical ly.  

Fig. 4 

vl.2 I.s 2.0 2.s 
Temperature (°K.) 

Thermal conductivity of solid helium at  constant density. 
(Berman, Simon and Wilks 1951.) 

For  each crystal  the probabi l i ty  of  a U-process, as measured by  the  
mean free path,  is a funct ion of 8/T, but  the  absolute number  of collisions 
depends on the values of A, which must  therefore  be a measure of  the 
anharmonic i ty  of  the  inter-atomic forces. I t  is interest ing to  observe 
t ha t  the value of A is the  same for solid helium crystals having the  wide 
range of densi ty  and conduct iv i ty  shown in fig. 4. 

I t  can be seen from fig. 3 tha t  the  ma x i mu m conduct iv i ty  occurs for 
each erysta] for a value of 0/T of about  20-25. I f  the conduc t iv i ty  



D
ow

nl
oa

de
d 

B
y:

 [S
w

et
s 

C
on

te
nt

 D
is

tri
bu

tio
n]

 A
t: 

20
:1

4 
21

 S
ep

te
m

be
r 2

00
7 Dielectric Solids at Low Temperatures 119 

maximum were determined by  the onset of appreciable boundary scatter- 
ing alone then at the maximum the mean free path due to U-processes. 
should be of the order of the crystal diameter. However, for all the  
crystals so far measured the mean free path at the maximum is an order 
of magnitude lower than this and possible explanations of the discrepancy 
will be discussed in § 5.3, Efforts are being made to obtain crystals o f  
other substances in order to make further measurements in the tempera.- 

Fig. 5 
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Mean free path for U-collisions as a function of O/T. A : synthetic sapphire 
(0-~980) ; B : diamond (0__~1,840) ; C : solid helium (8, 22-35). For 
solid helium the densities are : 0.218 (×) ; 0-214 (©) ; 0"208 (+);  
0"203 (A) ; 0.194 (O) g/cm a. (Berman, Simon and Wilks 1951.) 

ture range where the exponential variations of conductivity should be 
found. The combination of requirements is however rather exacting: 
great purity, freedom from strains, simple structure and sufficient size 
(particularly length) for accurate measurements. 

The simple expression (8) for the mean free path does not hold at 
temperatures greater than about 0/10 since the other temperature dependent 
terms become important. I t  is evident however that  the mean free path 
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120 I~. Berman on the Thermal Conductivity of 

continues to decrease and measurements at high temperatures suggest 
that  it would eventually reach the order of atomic dimensions. In 
potassium chloride, for example, at  0 ° c, (0/T=0.8) the value of the 
mean free path calculated from the thermal conductivity is only of the 
order of twenty lattice spacings. 

5.2. Boundary Scattering 
5.2.1. Single Crystals 

De Haas and Biermasz carried out many experiments on the size 
effect at liquid helium temperatures but did not find for any crystal 
even at the lowest temperatures (2 ° K) that  the conductivity is proportional 
to T 3, as given by Casimir's formula. For diamond and quartz the 
highest power of T reached was about 2.5 while for KC1 and KBr  the power 
of T was less than 2. The deviation from the expected relation can be 

Fig. 6 
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(the ordinates of C have been diminished by 20). (Casimir 1938.) 

clearly seen by plotting Ta/,~ against T, when a horizontal line should be 
obtained. Figure 6 shows such a plot made by Casimir. (In the figure 
W~l/s:.) This behaviour can be explained by assuming that  there is 
present in all these crystals some additional source of scattering and that  
the resistance due to it does not vary rapidly with temperature, so that  
it is still important down to the lowest temperatures of the measurements. 

In accord with the idea that  deviations from the T a law are caused by 
imperfections in the crystals, de Haas and Biermasz found that  at a given 
temperature the conductivity is not strictly proportional to the diameter 
of the crystal and, in fact, seems to approach a limiting value for large 
diameters. This is shown by plotting the conductivity at constant 
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~emperature against the diameter and fig. 7 is taken from the work of 
de Haas and Biermasz. They suggest that  the deviations from the T 3 
law are due to a mosaic structure in the crystals; this has also been 
suggested by Klemens (1951) for quartz. As has been discussed earlier, 
scattering by a mosaic structure would lead to a thermal resistance 
inversely proportional to the temperature, so that  if mosaic scattering 
alone were important the conductivity would be proportional to the 
temperature. At liquid helium temperatures the resistance due to 
U-processes in quartz is extremely small, so that  for an infinitely large 
crystal the conductivity would only be limited by mosaic scattering. 
From fig. 7 it can be seen that  the limiting values of the eonductivities 
for large diameters are roughly proportional to .the temperature, in 
agreement with the relation which should hold for mosaic scattering. 

3 Wl l~ crn ~ 

Fig. 7 
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Thermal conductivity of SiO~ J_ as a function of the thickness. 
(de Haas and Biermasz 1938 b.) 

Klemens suggests that  the departures from ideal behaviour in the 
alkali halides, both above and below the temperature of the conductivity 
maximum, are due to impurities and has shown that  very small concen- 
trations can explain the results (as will be discussed in § 6.1). 

I f  this explanation of deviations from Casimir's formula is correct, 
then at sufficiently low temperatures boundary scattering would be the 
only important cause of thermal resistance and the T 3 law would be 
obeyed. Few measurements on single crystals have been made, however, 
at lower temperatures. From the rate of temperature equalization of the 
ends of paramagnetic crystals demagnetized from inhomogeneous fields, 
Kurti, Rollin and Simon (1936) deduced values for the conductivity 
of potassium chrome alum at 0"18°K and of iron ammonium alum ~t 
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0.07 and 0-10 ° K. Although the accuracy of the experiments was not 
sufficient for the temperature variation of the conductivity to be deduced 
with great certainty, the ratio between the values of the conductivities 
of iron ammonium alum was about 3, while the cubes of the temperatures 
are in the ratio of about 3 too. I f  we take Duyckaerts' values of the 
lattice specific heat  (1942) and assume a value of 2× 105 cm/sec for the 
phonon velocity (see van Vleck 1941 b), then the mean free path calculated 
from eqn. (5) is about quarter of a millimetre, which is less than one 
twentieth of the crystal diameter. 

Potassium chrome alum has also been measured by Bijl (1949) and by 
Garrett (1950). Bijl used a conventional heating method and determined 
the temperature gradient, when a steady state h a d  been reached, by 
measuring the mutual inductance between a primary coil and two 
secondary coils wound round the ends of the specimen. The measure- 
mentswere made between 1.4 and 3,9 ° x and in this region the conductivity 
was found to be proportional to a power of the temperature of about 2.3. 
Bijl found that  the conductivity depended on the rate at which the 
specimen was cooled below 70 ° K, an effect which has not yet  been fully 
explained (see Eisenstein 1952). 

Garrett used a method similar to that  of Kurt i  et al., but a temperature 
gradient was produced in the crystal by magnetizing the specimen non- 
uniformly after the adiabatic demagnetization. The conductivity was 
measured at temperatures between 0.16 and 0.29° K and in this range 
the conductivity was found to be proportional to the cube of the tempera- 
ture within the experimental accuracy and seems to fit on to the ' slow 
cooling ' curve of Bijl, as shown in fig. 8. The phonon mean free path 
calculated from Garrett 's measurements, taking the value of the lattice 
specific heat given by Casimir (1940) and a value of 2×105 cm/sec for 
the phonon velocity, is about ½ mm while the diameter of the crystal 
was 15 mm. Such a large discrepancy suggests that  there are boundaries 
within the crystal sufficiently definite to scatter phonons independently 
of their wave-number and so to limit the" mean free path to ½ mm even at  
these low temperatures. 

I t  is evident that  in order to find whether Casimir's formula is correct 
for the case where only boundary scattering is important, it is necessary 
to measure the conductivity at temperatures which are only a small 
fraction of the temperature at which the conductivity maximum occurs. 
Except for diamond, for which the limitation has been the size of crystals 
available, the measurements have not been carried out at low enough 
temperatures by conventional methods and the methods relying on 
temperature equalization in a paramagnetic salt are too difficult to carry 
out for many experiments to have been made at sufficiently low tempera- 
tures. Recently artificial sapphire crystals (0 900 ° I<) of great purity 
have become available in suitable sizes for measurement. Also a diamond 
of sufficient length and of regular cross-section has been obtained. For 
these two crystals the conductivity maxima occur at temperatures 
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Dielectric Solids at Low Temperatures 123 

approximately 4 and 10 times tha t  of quartz, so that  measurements 
down to liquid helium temperatures extend correspondingly further into 
the region where boundary scattering is the dominant factor in determining 
the conductivity. 

The measurements on diamond have not yet been made on specimens 
of sufficiently different cross-section, but the results obtained so far seem 
to agree with those on artificial sapphire. For both crystals the con- 
ductivity does not vary with a power of T greater than 2.7 to 2.8, although 

Fig. 8 
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The thermal conductivity of Potassium Chrome Alum. (Garrett 1950.) 

the  lowest temperature of the measurements, 2 ° x, correspo~lds to about 
1/50 of the temperature of the maximum for diamond. At 2 ° K, however, 
~he phonon mean free path in diamond, calculated from eqn. (5), is slightly 
greater than the length of side of the square cross-section. According to 
Casimir's theory, the conductivity for a crystal of square cross-section, 
should correspond to a mean free path 1.1 times the length of the side. 

The values found for the conductivity of diamond at helium temperatures 
are about three times as great as those found by de Haas and Biermasz. 
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Th ey  used crystals of t r iangular  cross-section, the linear dimensions o f  
which must  have been of the  order of  one millimetre ; the original side 
of the  crystal  now measured was 4 mm. 

The  measurements  o'n sapphire have  so far been made on a crystal  
3 m m  diameter,  which was later  ground to a diameter  of 1.5 mm ; measure- 
ments  on specimens of bo th  larger and  smaller d iameter  will also be made .  
The results are shown in fig. 1. The main features are in agreement  with 
theory,  namely  t ha t  at high tempera tures  the  conduct iv i ty  is independent  
of the  d iameter  but  t ha t  at  the  lowest temperatures ,  below l0 ° K, the  
conduct iv i ty  is proport ional  to  the diameter.  However  the  mean free 
pa th  at  10°K is only one th i rd  of the  diameter  of each specimen and 
increases with decreasing tempera ture ,  reaching 0.8 of the  d iameter  
at  2 ° K. Strict  propor t ional i ty  of conduct iv i ty  to diameter  suggests t h a t  
only bounda ry  scat ter ing is impor tan t ,  bu t  in tha t  case Casimir's theory  
leads to  a conduct iv i ty  propor t ional  to  T a and a mean  free pa th  equal to  
the  d iameter  of the  crystal.  There  does not  seem to be a simple explanat ion  
of these results and  the measurements  made  so far on d iamond indicate 
a similar behaviour .  

One explanat ion  would be tha t ,  a l though the evidence suggests t ha t  a t  
sufficiently low tempera tures  Casimir's relat ion would be valid, at  t he  
tempera tures  of the  present measurements  the  resistance due to  boundary  
scattering is not  proport ional  to  T a. I f  the power of the  t empera tu re  is 
considered to  be an unknown factor  to be derived f rom experiments  of  
the  type  discussed, then  if  bounda ry  resistance is t aken  as being inversely 
proportional to  the  diameter,  the  to ta l  resistance at  low tempera tures  due 
to  imperfections as well as boundary  scattering can be represented by  
x/Rq-B, where x and B are functions of the t empera tu re  and the  two 
te rms represent  boundary  scat ter ing and the  size-independent defect- 
or Umklapp-resistance.  For  crystals of two different diameters we have  
then  the  equat ions 

x/Rlq-B----1/K 1 and x/R2q-B=I/K~ 

at a given tempera ture .  I f  these simultaneous equations are solved 
for the  conductivi t ies  of the  two sapphire specimens for t empera tu res  
between 2 and  45 ° K, t hen  it is found tha t  x is propor t ional  to  T 2.~ and B 
is near ly  independent  of  tempera ture .  This cannot  be considered as a 
proof  tha t  bounda ry  resistance departs  f rom a T -a var ia t ion and it is 
clear t ha t  fu r ther  experiments  are necessary. + 

5.2.2. Polycrystalline Solids 
I t  is evident  t ha t  at  low tempera tures  a crystal  of ve ry  small d iameter  

would have a ve ry  low the rmal  conduct iv i ty  bu t  measurements  have not 
been made  on single crystals with a d iameter  less t h a n  the order of a 
millimetre. Several  authors  have,  however,  repor ted  values for the  

* More recent experiments on still thinner diamond and sapphire crystals 
show conductivities departing only very little from the T 3 law below 4 ° x. 
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conductivity of compressed powders of paramagnetic salts, composed of  
grains from 10 -3 cm upwards. Kurti,  Rollin and Simon (1936) mentioned 
that  the conductivity of a compressed powder of iron ammonium alum was 
about 1/10 of the conductivity of a single crystal of 7 mm diameter. The 
dependence of conductivity on size was not known at the time and there 
was therefore no reason to think that  the difference was due to a cause 
other than the porosity ; neither the density of the specimen nor the 
grain size were stated. 

Van Dijk and Keesom (1940) deduced the relation K~-0-00312 Tm a 
calories/cm sec deg for the conductivity of a compressed powder of the 
same salt in the temperature range 0.04 to 0.3 ° K ( T  m being the magnetic 
temperature). This would give a value at  0-1 ° about one sixth of the 
single crystal value of Kurt i  et al. Again the grain size is not given, but 
the density is stated to be very close to the single crystal value. 

Hudson (1949) obtained some mean conductivity values between 0.10 
and 0.22 ° x for a compressed powder of iron ammonium alum of nearly 
single crystal density, consisting of crystallites estimated to be between 
10 -3 and 10 -2 cm in size. At 0.10°K the conductivity was about fifty 
~imes less than the single crystal value of Kurti  et al. although from the 
relative diameters alone the ratio would be expected to be several 
hundred. Hudson attributes this discrepancy to an increase of the 
phonon mean free path above the size of the crystallites, which is made 
possible by the good contact between the crystallites. However, as has 
been pointed out above, the mean free path calculated from the single 
crystal conductivity is about one twentieth of the crystal diameter, so 
that  Hudson's results actually suggest that  the mean free path in the 
polycrystalline material is of the order of size of the crystallites. 

Recently some other polycrystalline solids have been measured 
(Berman 1952) and for specimens of alumina and beryllia which had 
nearly the single crystal density the calculated mean free path 
becomes slightly greater than the estimated crystallite size at low 
temperatures. For graphite specimens with a density of about 70 °/o of 
the single crystal there is no evidence that  the phonon mean free path 
does increase above the crystallite size. The interpretation of the results 
is made difficult by the absence of measurements on the corresponding 
single crystals, except in the case of alumina, although even for this 
it is not certain that  the crystal form was exactly the same as the 
artificial sapphires which have been measured. 

The sintered alumina had a density equivalent to 95 °/o of the single 
crystal value and at temperatures above the conductivity maximum had 
a conductivity about half that  of a single crystal. This difference can 
be ascribed to the fact that  the crystallites do not touch over their whole 
surface, so that  even if there is no actual contact resistance the overall 
conductivity is less t han ' t ha t  of the individual crystaUites. Below the  
maximum the conductivity decreases proportionally to T ~'~, which 
indicates that  the mean free path is still increasing slowly, and is about 
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20 ~ at 3 ° K, compared with direct measurements of the crystallite size 
from a photomicrograph which showed crystallites ranging in size from 
about 5 to 30 ~. This suggests that  the mean free path does increase 
~lightly above the crystaltite size and it is interesting to estimate the 
erystallite size from the position and value of the conductivity maximum. 
The maximum c~nductivity occurs at 75 ° K and the mean free path due 
to Umklapp processes at this temperature can be obtained from the single 
crystal measurements, and is about 3 ~. As the maximum would be 
expected to occur at a temperature such that  the Umklapp mean free 
pa th  is of the order of size of the crystallites, this gives a value for the 
erystallite size. The actual value of the conductivity at the maximum 
also suggests this order of size of the crystallites. 

The sintered beryllia was only measured up to about 90°K and over 
this whole range the conductivity increases with temperature so that  the 
maximum must occur at a considerably higher temperature than for 
alumina. Although the boundary resistance is about the same for the 
two substances, much higher values of conductivity at room temperature 
and above have been reported for sintered beryllia (e.g. Norton and 
Kingery 1952) so that  its resistance due to Umklapp processes must be 
lower and the maximum conductivity should occur at a higher temperature 
*han for alumina. 

Many samples of graphite have been measured above room temperature 
by Powell and Schofield (1939) who found that  some specimens at room 
temperature had very high conductivities. For example, some samples 
had conductivities similar to that  of copper, even though measurements 
of  the electrical conductivity show that  less than 1 ~/o of the heat conduc- 
*ivity can be ascribed to free electrons. 

Samples having mean crystallite sizes of 300, 1000 and 2000 ), have now 
been measured (Berman 1952) from 2°K up to room temperature 
and the general behaviour is similar to that  of the sintered 
alumina. However, the conductivity is much lower at low temperatures, 
corresponding to the much smaller crystallite size, and for the specimen 
with the smallest crystallite size the mean free path seems to be restricted 
¢o about 300 .~ even at the lowest temperatures. Graphite is an 
extremely anisotropic solid and has a specific heat which departs 
considerably from Debye's theory, being proportional to a power of T 
between 2 and 2.5 at low temperatures, so that  the interpretation of the 
conductivity results is uncertain. I t  may be significant that  the 
conductivity at low temperatures varies as a power of T which is about 
2.2 for the specimen of smallest crystallite size and is about 2.7 in the 
largest case. 

These graphite specimens are very good heat insulators at low 
eemperatures ; at 2 ° K, for example, the thermal conductivity of the 
300 h graphite is one twelfth of that  of ordinary glass, which would 
generally be considered a good heat insulator. I t  is not certain how the 
¢onductivities would compare at lower temperatures, since the conducti- 
v i ty  even of glass would eventually be limited by boundary scattering, 
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while the conductivity of graphite might not continue to fall off so rapidly 
below I°K if the electronic heat conductivity becomes more important 
than  the lattice contribution. 

Although the results on microcrystals are, in general, more difficult 
to interpret than those in single crystals it does appear that  they conform 
more closely to the simple theoretical picture of an ideal crystal with only 
two causes of thermal resistance, Umklapp processes and boundary 
scat lering. Presumably as the phonon mean free path is always re- 
stricted to a very small length by these two processes the effect of 
imperfections in the crystal lattice is not noticeable at any temperature. 

5.3. The Conductivity near the Maximum 

The conductivity to be expected when both boundary scattering and 
U-processes are important has been discussed in § 3.3. For single 
crystals of the size usually measured, the conductivity at the maximum 
should be about 20-300/o less than would be given by simple addition 
of the resistances due to the two processes, considered to a c t  separately. 
Since the resistances due to both processes vary rapidly with temperature 
the conductivity on either side of the maximum should very soon be 
determined by one process alone. 

For all the pure single crystals which have so far been measured the 
maximum conductivity is less than the value calculated for an ideal crystal, 
even when this is calculated according to the combination formula given 
by Klemens. The absolute value of the Umklapp resistance in the 
neighbourhood of the maximum cannot at present be calculated from 
other properties of the crystal, but it can be estimated by extrapolation 
from higher temperatures where it is the dominant factor. 

A, small difference between the calculated and experimental values of 
the maximum conductivity could be ascribed to uncertainty as to the 
dependence of Umklapp scattering on temperature at temperatures below 
those at which its effects alone are important. However, for 'solid 
helium in a tube of ½mm diameter the discrepancy is about a factor 2, 
for t h e 3  mm diameter sapphire it is a factor 8 and for a diamond of 
4 mm square cross-section it is a factor of over 20. 

The simplest explanation is to postulate a sufficient number of defects 
to account for the discrepancies ; it is then necessary to decide the type 
of defect which would give the extra thermal resistance observed. For 
both sapphire and diamond the differences between the calculated and 
observed thermal resistances increase with decreasing temperature;  in 
the case of sapphire the extra resistance is roughly inversely proportional 
to  the temperature, while for diamond the variation with temperature 
is much less. For the two sizes of sapphire the extra resistance is the 
same at the conductivity maximum, but increases more rapidly with 
decreasing temperature for the smaller crystal, a fact which is connected 
with the departures from Casimir's law discussed earlier. The equality 
of the extra resistances at the maxima confirms the belief that  these are 
due to some defect in the crystal and not merely to an error in the theory 

p.M. SUPPL.--JAIl. 1953 X 
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and the experiments made so far on diamond also suggest that  the extra. 
resistance at  the maximum does nbt depend on the size. As the extra. 
resistance must actually be the main resistance at the maximum the 
value of the maximum itself should be little changed by altering the 
diameter of the crystal, which only alters a small component of the total 
resistance. From fig. 1 it can be seen that  the maximum conductivities 
for the two sapphires should occur at about 30°K and should be about 
500 and 300 watt  units, whereas the actual maxima are at a higher tempera- 
ture, of much smaller magnitude and are only about 12°/o different from 
each other. Experiments will be made when the crystal is further reduced 
in diameter. 

An extra thermal resistance which increases slowly with decreasing 
temperature could be due either to the effect of a mosaic structure or to 
impurities (or other small scale defects). Impurities would have to be 
grouped together in clusters which are of such a size tha t  Rayleigh 
scattering does not occur for the wavelengths which are important  at 
the temperatures Concerned. At lower temperatures Rayleigh scattering 
might occur, but here the boundary resistance is great enough to mask 
the effect of defects. 

Only one experiment has been made to find the effect of a mosaic 
structure : this was performed on an artificial sapphire selected, by x-ray 
examination, to have a mosaic structure much more pronounced than 
in most specimens. Although this structure was certainly more marked 
than in the sapphire on which the other experiments have been carried 
out, the thermal conductivity was no different even in the region of the 
conductivity maximum, where, any extra source of resistance would be 
most noticeable (Berman, to be published). 

Klemens (1952) has pointed out, that  Ahearn (1951) postulates the 
presence of clusters of defects in diamond to explain the electrical 
properties which he has measured. Such clusgers could also account for 
a thermal resistance which is nearly independent of temperature. The 
strong effect of defects in diamond would also explain the differences 
between the values measured by de Haas and Biermasz and those shown 
in fig. 3. At liquid helium temperatures the two sets of measurements 
are in agreement when account is taken of the different cross-sectional 
areas used, but at liquid air temperature the single measurement of 
de Haas and Biermasz gives a value of the conductivity one half of the 
recent value. As has been explained, reduction of the cross-section has 
very little effect on the conductivity in this temperature region, so that  
the difference in conductivities here can be ascribed to the different 
qualities of the stones. 

The puri ty of the diamond which is being used for the present measure- 
ments will be determined at the end of the experiments and it is hoped 
that  it will be possible to obtain a stone of different purity. Artificial 
sapphires can be prepared with a wide range of suitable impurities and 
one series of measurements on an impure crystal will be described in the 
nex t  section. 
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The relative smallness of the discrepancy between the calculated and 
measured conductivity maximum for solid helium would be expected 
both from the puri ty of the crystal, which must result from the way in 
which it is formed in the apparatus (Webb et al. 1952) and also from the 
small diameter of the crystal measured. I t  would be interesting to find 
whether the discrepancy increases with increasing diameter as for diamond 
and sapphire. 

§ 6. MEASUREMENTS OF THE EFFECTS OF LATTICE IMPERFECTIO:NS 

6.1. Ira~urities 

There have not been many measurements designed to determine the  
effect of lattice imperfections on thermal conductivity. Eucken and 
Kuhn (1928) measured a series of mixed crystals of KC1-KBr at room 
temperature and at liquid air temperature. The thermal conductivity 
was greatest for crystals of either of the pure components and for any 
intermediate concentrations the relative decrease in conductivity was 
greater at the lower temperature. This occurs because the resistance 
due to impurities is weakly dependent on temperature at these tempera- 
tures while the Umklapp resistance is roughly proportional to the 
temperature in this range. The importance of these experiments is tha t  
quantitative deductions can be made as to the effect of impurities, whereas 
in later experiments the impurity concentration is not known so accurately. 

De Haas and Biermasz found that  above the conductivity maximum 
the thermal conductivities of KC1 and I(_Br crystals are inversely 
proportional to the temperature and the absolute values are smaller than 
those for quartz. The conductivity of KC1 is about one quarter of tha t  
of quartz in the region of the maxima but becomes greater at temperatures  
above about 60 ° K. The values for KBr  are smaller at all temperatures 
at which measurements were made. This strongly suggests tha t  the 
absence of the exponential variation of conductivity at low temperatures 
is not observed for the alkali halides on account of impurity scattering, 
For these ionic crystals there is a simple mechanism by which impurity 
atoms can enter the lattice, whether they are of the same or different 
valency from the other atoms. The scattering can then be due either to 
the effect of the presence of an atom of different atomic weight or to the  
combined effect of an impuri ty atom and the corresponding hole created 
to preserve the electrical neutrality of the crystal as a whole. The lat ter  
cause would be expected to give the greater scattering. 

In the KC1 crystal measured by de Haas and Biermasz the concentration 
of sodium and magnesium impurities were both estimated to be less than  
10 -4. Since magnesium is divalent there must be a potassium atom 
missing from the lattice for each magnesium atom present. Klemens 
(1951) has calculated the thermal resistance to be expected on the  
assumption that  the effect of an impurity atom and the associated vacant  
site is the same as would be produced by the presence in the crystal of a 

K 2  
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spherical hole of radius equal to X times the lattice constant. I f  e is 
the impurity concentration then he shows that  for KC1 eX e ----6.4 × 10 -5. 
I f  X is of the order of unity, then the impurity concentration calculated 
this way is not inconsistent with the estimated purity of the crystal. 
Comparison at liquid air temperature of the resistance of the crystal 
measured by de Haas and Biermasz with that  of a mixed crystal co~taining 
10% KBr shows that the scattering caused by an atom of wrong valency 
is at  least 100 times greater than the scattering produced by ~n atom of 
different mass but of the same valency. 

In  the cuse of KC1 and KBr  Klemens has also accounted for the low 
power of the temperature variation of the conductivity below the maxima 
by the presence of impurites. The resistance due to impurities is pro- 
portional to the temperature and therefore dies away much more slowly 
than that  due to Umklapp processes. Measurements would have to be 
made at much lower temperatures for boundary scatgering alone to be 
important. 

An experiment has been made to determine the effect of impurities 
directly, as a function of temperature (Berman, to be published). 
Measurements were made on an artificial ruby, which is an artificial 
sapphire with chromium impurity. Scattering is caused by the rep]ace~ 
merit of a few aluminium atoms by chromium atoms, which have the 
same valency but double the atomic weight. The thermal resistance of 
a pure sapphire of the same diameter has been subtracted from the 
resistance of the ruby and the resulting resistance is practically inde- 
pendent of temperature between about 20 and 70 ° K. 

This indicates that  it is possible for impurities to give an extra thermal 
resistance which varies with temperature in a way similar to the variation 
of extra resistance calculated in diamond and sapphire. From this 
experiment it would be assumed that  in the ruby the impurity atoms 
are to a certain extent clustered together so that  the scattering deviates 
from l~ayleigh's law. I t  is not certain how significant it is that  at the 
surface there was a concentration of chromium atoms not in homogeneous 
solution in the crystal. 

The exact concentration of chromium is not yet known as this can only 
be determined by analysis of the crystal, being less than the concentration 
of chromium in the powder from which the crystal is made. It  is 
estimated to be of the order of ½ %, which is considerably more than the 
maximum divalent impurity which could have been present in the KC1 
crystal measured by de Haas and Biermasz. The relative increase in 
resistance is, however, smal], in agreement with the small increase of 
thermal resistance found, by Eucken and Kuhn, to result from impurities 
of the correct valency. 

I t  is not certain how the results of Estermann and Zimmerman (1951) 
on the conductivity of pure and impure germanium should be interpreted. 
There are no measurements in the neighbourhood of the conductivity 
maximum and also the two specimens had very different diameters. 
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6.2. Displaced Atoms 

Expe r imen t s  have  been m a d e  to  determine the effect o f  displaced 
a toms  on the  t he rm a l  conduc t iv i ty  of  a quar tz  crystta.1 (Berman,  Klemens ,  
S imon and F r y  1950, B e r m a n  1951). One crys ta l  was given three  succes- 
sive periods of  neu t ron  i r radiat ion in the  Harwel l  pile a n d  a second 
crystal ,  which originally had  the  same  conduct iv i ty ,  was la ter  given a 
ve ry  small  i rradiat ion.  As the  conductivi t ies  of  the  two  original crys ta ls  

Fig. 9 
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were the  same we m a y  consider the  series as four successive irradiations 
of  one crystal.  

The  conduc t iv i ty - t empera tu re  curves af ter  each i rradiat ion are shown 
in fig. 9, but  in order to  in terpret  the  results it is simpler to consider tim 
ex t ra  thermal  resistance induced. The thermal  resistance of the original 
crystal  has been subt rac ted  from the resistance of the crystal  subsequently,  
:to give the  res i s tance- tempera ture  curves shown in fig. 10. I t  is 
justifiable to assume tha t  the  thermal  resistance is addi t ive  in a simple 

Fig. 10 
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way  as the  resistance of the  crystal  af ter  the i r radiat ion is always 
considerably  greater  t han  the  original resistance. This assumption is 
also confirmed by  the fact tha t  all the  ext ra  res i s tance- tempera ture  
curves  have  a similar shape. 

Above 15 ° K the  resistance varies in the  manner  to be expected  for small 
defects and  by  comparison with the  calculations made  for the  alkali 
halides it is possible to  es t imate  the  defect concentra t ion ; this agrees with 
the  order of magni tude  es t imated  f rom the irradiat ion doses. I t  is 
necessary, however,  to  assume tha t  large defects are also present  to 
expla in  the  increasing resistance at  lower temperatures .  These could be 
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clusters of interstitial atoms and vacant sites, formed in accordance with 
the processes discussed by Seitz (1949). The scattering by clusters of 
defects would be less dependent on the phonon frequency than the 
scattering by single defects and if they were large enough would act in a 
similar way to boundary scattering but with a much smaller mean free 
path. 

Some support for the conclusion that there are clusters of defects 
present is provided by the measurements of conductivity made after 
various periods of heating following the last irradiation. The crystal was 
heated for periods usually of about 6 hours, and the thermal resistance 
extra to that  of the original crystal again determined. The simplest 
comparison between the resistance left after any of these hearings and the 
resistance induced by irradiation can be made for treatments which 
resulted in nearly the same resistance. After the crystal had been 
heated at 700°c the conductivity was restored to roughly the value it 
had after the second irradiation, as can be seen by comparing curves E 
and B of fig. 10. The shapes of the curves of extra resistance against 
temperature are, however, different; the similarity of the two curves 
at  the higher temperatures suggests that  after this particular heating 
there were present about as many defects as were produced after the 
second irradiation, but the difference at the lower temperatures suggests 
that  the scattering by the clusters is less for the defects left after heating. 
As the irradiation effects are cumulative the size of the clusters and the 
ratio of their number to the total number of defects remains the same for 
any period of irradiation. On heating, however, the size or density of the 
clusters must decrease so that  when the total number of defects has been 
reduced to a given amount the relative effect of clusters is less. 

An unirradiated crystal, which originally had the same conductivity 
as the crystals which were later irradiated, was given the same heating 
as the irradiated crystal in order to find whether heat t reatment  alone had 
any effect on the conductivity. De Haas and Biermasz (]935) carried 
out a similar experiment and found that  the conductivity at liquid 
hydrogen temperatures was reduced by 10-15 % after the crystal had been 
heated to 570 ° c and then allowed to cool slowly. In the present experi- 
ments no difference was found even after heating a crystal to 800 ° c. 
I t  is possible that  this difference of behaviour can be explained by the 
difference between the rates of heating and cooling ; on the other hand, de 
Haas and Biermasz do not give any indication of the reproducibility of 
their results if a specimen is merely removed from the apparatus and then 
set up again. However, after this present crystal had been heated to 
850°c its conductivity was considerably reduced and turned out to be 
almost the same as that  produced in the other crystal by the first irra- 
diation. A comparison of the extra resistances suggests that  heating 
produces fewer clusters than irradiation. 

The main purpose of the annealing experiments was to find whether 
the irradiation effects are reversible. They were not complete enough, 
as regards the influence of both time and temperature for a value of the 
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activation energy of the recovery process to be derived. I t  is evident, 
however, that  measurements of the thermal conductivity could be used 
for this purpose, although the effort involved in making measurements 
at the low temperatures which are necessary for appreciable sensitivity 
would be considerable. 

6.3. Mosaic Structure 

There have been several suggestions that  comparatively low values of 
thermal conductivity, at temperatures where boundary scattering might 
be expected to be the chief cause of resistance, can be attributed to 
scattering due to a mosaic structure (de Haas and Biermasz 1938 b, 
Garrett 1950, Klemens 1951). I t  has already been mentioned that  de 
Haas and Bicrmasz' results for quartz do suggest that  for a crystal of 
sufficiently large diameter the conductivity would be limited by mosaic 
scattering. I t  is to be noted, however, that  Klemens has shown that  for 
the KC] crystal measured by these workers the observed conductivity 
can be explained without assuming mosaic scattering. 

Garrett found that  the conductivity of potassium chrome alum between 
0.16 and 0.29° ~: is proportional to T 3 but that  the phonon mean free 
path calculated from the conductivity is only about 1/10 of the crystal 
diameter. Although Garret~ suggests that  this can be ascribed to a 
mosaic structure Pomeranchuk's treatment leads to scattering by mosaic 
structure which is frequency dependent, resulting in a conductivity 
proportional to the temperature. The boundaries within the crystal 
must therefore be more definite in order to give a scattering which is 
independent of frequency and a conductivity proportional to the cube 
of the temperature. 

The measurements on artificial sapphire could also possibly be explained 
by the effect of a mosaic structure but, as has been mentioned, a crystal 
which was found to have a more marked mosaic character showed no 
difference in its thermal conductivity. Thi~ would seem to be the only 
set of measurements intended to test the effect of mosaic scattering 
directly. I t  cannot be considered conclusive as to the effect of a mosaic 
structure as this crystal was very short and the accuracy of the measure- 
ments was not as high as for other crystals. Any effect could not, however, 
be greater than 2-3%, so that  if a mosaic structure accounts for the 
gr6at reduction found in the maximum thermal conductivity of the 
crystals so far measured, it must be at its maximum effectiveness even in 
crystals of good quality. I t  is clearly desirable that  further experiments 
should be made on this effect. 

§ 7. AMORPHOUS SOLIDS 

7.1. Theoretical 
In his original paper Debye (1914) explained the great difference between 

the thermal conductivities of crystals and of amorphous solids in terms 
of the difference in the mean free paths of the lattice waves. In a crystal 
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the scattering arises from the density fluctuations associated with the 
thermal vibrations and these fluctuations decrease with the temperature, 
so that  the mean free path increases with decreasing temperature. In aa  
amorphous solid, however, the mean free path is restricted by the dis- 
ordered structure to a length of the order of the intcratomic distance and 
Debye assumed that  it would be independent of temperature. Using 
eqn. (1) it is evident that  the thermal conductivity should be proportional 
to the specific heat. 

I t  was pointed out by Kittel (1949) tha t  it could be deduced from 
several measurements which had been made below liquid air temperatures 
that  the phonon mean free path in various glasses does increase with 
decreasing temperature at  sufficiently low temperatures. He suggested 
that  this would be expected to occur for temperatures such that  the 
dominant phonons correspond to wavelengths greater than the size of 
the ' un i t  cell '  in the glass; for such phonons the scattering by the 
disorder in structure decreases with increasing wavelength. For quartz 
glass, in which the unit cell may be taken to be 7 h (the size of the oxygen 
tetrahedron surrounding each silicon atom) the temperature below which 
the mean free path should increase is about 200 ° K. 

Klemens (1951) has developed a detailed theory of heat conduction in 
glass. As for a crystal, the thermal motion can be resolved into normal 
modes of vibration , but as the structure is irregular these normal modes 
are not plane waves. The instantaneous displacements can still be 
resolved into plane waves but there is now an interchange of energy 
between them leading to ' st:ucture scattering '. Klemens assumes that  
short waves are attenuated by this process with a constant mean free 
path. In order to find the mean free path of long waves he considers 
their energy in two parts : the energy pertaining to the overall motion of 
a large region and the energy pertaining to relative motion of neighbouring 
atoms. The energy of overall motion is assumed to belong to a normal 
mode which is almost identical to the plane wave and this energy is retained 
by the wave. The energy of relative motion belongs to high frequency 
modes and is attenuated in the same way as high frequency plane waves. 
I t  is thus shown that  the mean free path of long waves is inversely 
proportional to the square of the wave-number: 

As in the treatment of crystals, it is necessary to consider the effect of 
processes in which momentum is conserved, represented by eqn. (2) 
and (3), and the mean free path for such processes 'is assumed to be the 
same as in crystals, as has been calculated by Pomeranchuk (1941) and 
by Landau and l~umer (1937). 

Klemens obtains the thermal conductivity in terms of three empirical 
constants which can be found by comparison with the experimental results. 
At high temperatures the conductivity is mainly determined by the mean 
free path of transverse waves and is proportional to the specific heat, but 
at low temperatures the conductivity is determined by longitudinal waves 
and is proportional to the absolute temperature. The contributions of the 
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two types of waves is equal, for quartz glass, at about 25 ° ~. The 
comparison between theory and experiment is shown in fig. 2 ; K~ and 
•iI denote the contributions of the longitudinal and transverse phonons 
respectively. I t  can be seen that  the main features of the theoretical 
curve which are not dependent on the determination of the constants are 
in agreement with experiment and by choosing the constants suitably very 
close quantitative agreement is obtainable over the whole range of 
temperature.  

7.2. Experimental 
The measurements by Eucken (1911 a) on quartz glass and by Stephens 

(1932) on Pyrex glass showed that  the conductivity varies roughly a s the 
specific heat down to liquid air temperature. Measurements have been 
made at  lower temperatures by Bijl (1949) Wilkinson and Wilks (1949) 
and Berman (1951) and there is an isolated measurement at 1.3°K by 
Keesom (1944). 

Bijl measured four types of glass between 1.5 and 3.0 ° K, using a method 
similar to that  which he used for potassium chrome alum. The tempera- 
ture gradient along the rods was measured by measuring the temperature 
of two specimens of a paramagnetic salt which were enclosed in glass 
vessels attached to the glass rod. The geometrical factor for calculating 
the conductivity could not be determined to better than about 300 /bu t ,  
by making all the specimens of the same size, Bijl was able to compare the 
conductivity of the various types of glass. I t  was found that  the con- 
ductivities of all four glasses were of the same order of magnitude and 
varied approximately as T ~'a. 

Wilkinson a n d  Wilks measured the conductivity of Phoenix glass by 
determining the rate at which a rod conducted heat into a vessel of liquid 
helium. By varying the temperature of the ' warm ' end of the rod, it 
was shown that  the conductivity is nearly independent of the temperature 
between 10 and 20 ° K. 

Quartz glass and Phoenix glass were measured between 2 and 90 ° K by 
Berman and a soft glass was measured between 2 and 5 ° K. The absolute 
values are in agreement with those of Wilkinson and Wilks for Phoenix 
glass and the variation with temperature at liquid helium temperatures is 
similar to that  found by Bijl. Comparison with the absolute values 
found by Bijl cannot be made for any one glass, but the most similar in 
composition are the Thuringian glass measured by Keesom and Bijl and 
the G. E. C. Wembley X 8 glass measured by Berman. An extrapolation 
of Bijl's curve gives a value 30% higher than that  found by Keesom at 
1-3 ° ~ and at  liquid helium temperatures his results are also about 30°/0 
higher than those of Berman. This difference is the same as the 
uncertainty in absolute values which Bijl states is due to the difficulty in 
determining the geometrical factor necessary in calculating the con- 
ductivity in his experiments. 

Some work has been carried out on plastics : a temperature variation 
of conductivity similar to that  of glass has been found for Perspex (Berman 
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Dielectric Solids at Low Temperatures 137 

1951), which was measured between 2 and 20 ° K. Also an a t tempt  was 
made to find whether there is any difference in conddetivity between 
stretched and unstretched Nylon threads, associated with the different 
degree of crystallinity. Up to now only some preliminary measurements 
have been made on a stretched sample below 20 ° K. The conductivity 
can be represented roughly by K=2 .5×10  -5 T 1"~ watt units. Until 
further measurements are made it is not certain whether this temperature 
variation is related to the similar variation found in glasses below about 
4 ° and which may also hold for Perspex below 2 ° K. 
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Thermal conductivity of graphite (300 ~), quartz glass and nylon. 

I t  has been pointed out in § 5.2.2, tha t  although glasses are poor 
heat conductors at normal temperatures, microerystalline solids may have 
much lower conductivities at low temperatures. In fig. 11 are shown, for 
comparison, the conduetivities of quartz glass, Nylon and of the graphite 
specimen with the smallest crystallite size which was measured. 

§ 8. SUMM~Y 

The main features of the conductivity-temperature relation for pure 
dielectric crystals can be explained in terms of Peierls' theory, supple- 
mented by the calculation by Casimir of the influence of the crystal size at 
low temperatures. The Umklapp processes postulated by Peierls give 
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rise to a thermal resistance which decreases with decreasing temperature 
at low enough temperatures the decrease follows an exponential law. The 
thermal resistance remains finite, however, and, in fact, increases again 
owing to scattering of the phonons at the boundaries of the crystal ; 
this increasing resistance is no longer an intrinsic property of the 
crystalline material but depends on the diameter of the crystal measured. 

The exponential rise in conductivity has recently been observed for 
several crystals and boundary scattering has been studied for a consider- 
able time, but there are considerable difficulties in explaining the details 
of the temperature variation of conductivity actually found for single 
crystals. The greatest discrepancy between the theoretical values, based 
on the two sources of resistance mentioned, and the experiments is found 
in the neighbourhood of the conductivity maximum. Here the resistance 
of the ideal crystal would be very small, so that  any extra source of 
resistance would be shown up most dearly. 

Experiments on the dependence of the maximum conductivity on 
crystal diameter suggest that  the discrepancy is due to defects in the 
crystals, since it is found that  the discrepancies are smaller for crystals of 
smaller diameter;  for sufficiently small crystals, such as exist in some 
polycrystalline solids, the resistances due to Umklapp processes and to 
boundary scattering are at all temperatures large enough to mask the 
effect of imperfections. 

I t  was found that  only about 3 displaced atoms per million (produced by 
neutron bombardment) in a quartz crystal halved the value of the 
maximum conductivity, so that  it might be expected that  crystals of 
high purity, having the same diameter, would accidentally have sufficiently 
different imperfections to show differences in their maxima. However, 
three natural quartz crystals were measured in the course of the experi- 
ments and there was no difference between the values of the maxima 
(the experimental accuracy was 1-2~/o). Also, no difference was found 
between two artificial sapphire crystals, one of which had a much more 
pronounced mosaic structure than the other. Only in the case of diamond 
is there some evidence that  the maxima may be different for different 
crystals, and further measurements will be made on pure crystals near the 
maxima to look for small differences. 

From the temperature dependence of the extra thermal resistance which 
is present near the maximum it is possible to deduce the grouping of  
imperfections which would give rise to it. Single defects, defects grouped 
together in either clusters or linear arrays (such that  all dimensions are not 
small compared with the dominant lattice wavelengths) and a mosaic 
structure have been suggested to explain the results for various crystals. 
There is, however, only meagre experimental evidence as to the tempera- 
ture variation of the resistance which each of these groupings of imper- 
fections actually produces. 

There are discrepancies between theory and experiment at lower 
temperatures which cannot be explained simply in terms of imperfections : 
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these are observed in the region where only boundary scattering would be 
expected to be important. The conductivity should be proportional to 
T 3 and should correspond to a phonon mean free path equal to the dia- 
meter of the crystal. These two characteristics of boundary scattering 
have not been found together for the conductivity of any crystal. The 
T ~ variation of conductivity has only been observed in measurements of 
potassium chrome alum below 0"3 ° K and a phonon mean free path equal 
to  the theoretical value has been derived only from measurements on dia- 
mond at about 2 ° K. In  both cases the temperatures correspond to about 
8/1000. At higher temperatures the conductivity is still found to be 
proportional to the crystal diameter, which suggests that  only boundary 
scattering is important, but it is proportional to a smaller power of the 
temperature than 3 and the mean free path is less than the diameter. 

Although the thermal conductivities of dielectric crystals do not reach 
the very high values calculated for the ideal case, the values can be of the 
order of magnitude associated with metallic conductors. I t  is commonly 
s tated that  metals are better conductors than dielectrics on account of the 
electronic conductivity. The conductivity of die]eetrics is much more 
temperature dependent than that  of metals and it happens that  at room 
temperature the eonductivities are generally well below the maximum and 
are, consequently, lower than the good metallic conductors. For diamond, 
however, room temperature is still a relatively low temperature and the  
thermal conductivity is higher than that  of any metal yet measured. At 
the  other extreme it has been shown that,  asa result of boundary scattering, 
dielectric solids with sufficiently small crystallites can have conductivities 
much smaller than amorphous solids, such as glass. 

I t  is hoped that  some of the experiments which are planned, particularly 
those on the ' size effect ', will throw more light on the discrepancies still 
existing between theory and experiment ; they should suggest ways in 
which the theory needs further development. 
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