PAUL SCHERRER INSTITUT		Memorandum	
Date:	10/Nov/2014		
From: Phone:	T. Prokscha 4275	То:	LEM group
Room: E-mail:	WLGA / U119 thomas.prokscha@psi.ch	cc:	

Beam deflection of the low-energy μ^+ beam in the AEW magnet ("Bpar")

A simple estimate is given for the deflection of the keV μ^+ beam in the AEW experimental magnet before impinging on the sample of the LEM setup at PSI. For 12 kV - 15 kV extraction at the moderator target the deflection angle of the muons is about 10° at an applied field of 10 mT.

The deflection angle ϕ_B of a charged particle with momentum p in a magnetic field B with effective length l_{eff} can be approximated by [1]

$$\phi_B \simeq \frac{e \cdot l_{eff} \cdot B}{p} = \eta_B \cdot \frac{B}{p}.$$
 (1)

The effective length of the AEW magnet up to the center of the AEW field is $l_{eff} \approx 8$ cm, which yields $\eta_B \simeq 2.7 \text{ mrad}(\text{MeV/c})/\text{G}$. For 12 and 15 kV extraction at the moderator, the respective energies E after the start detector (TD) are 11.1 keV and 14.3 keV. It follows for the momentum $p = \sqrt{2mE}$ with m the muon mass

$$p(15kV) = 1.74 \text{ MeV/c}$$

 $p(12kV) = 1.53 \text{ MeV/c}.$

This gives deflection angles ϕ_B in an applied field of 100 G of

$$\phi_B(15 \text{kV}, 100 \text{G}) \simeq 155 \text{ mrad} = 8.9^{\circ}$$

 $\phi_B(12 \text{kV}, 100 \text{G}) \simeq 176 \text{ mrad} = 10.1^{\circ}.$

The deflection Δx at the sample position is then given by

$$\Delta x = r \cdot (1 - \cos \phi_B), \ r = \frac{l_{eff}}{\phi_B}$$
$$\Delta x (15 \text{kV}, 100 \text{G}) \simeq 0.6 \text{ cm},$$
$$\Delta x (12 \text{kV}, 100 \text{G}) \simeq 0.7 \text{ cm},$$

where the deceleration/acceleration in the electric field of the last focusing element RA has been ignored for simplicity.

[1] see, for example, T. Prokscha, The new $\mu E4$ separator, PSI (2007), available under http://www.psi.ch/smus/BeamlineMuE4EN/mue4_separator.pdf