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Abstract 

Exact analytical expressions for the magnetic dipolar fields produced by a plane square lattice with localized 
magnetic moments are derived. Basing on these expressions surface roughness of a magnetic thin film is considered. 
Influence of the dipolar fields on the surface anisotropy and hyperfine fields is discussed. 

1. Introduction 

Recent advances in magnetism of thin films [l] demonstrate the possibility to investigate experimen- 
tally local magnetic properties such as hyperfine fields of monoatomic layers 121, surface anisotropies [3], 
isolated domain walls [4], magnetic moments of single atoms [5], coupling between thin magnetic films [6] 
and others. However, a detailed theoretical analysis of these local characteristics of thin magnetic films 
requires taking into account many factors which make this analysis extremely complicated. A typical 
example of such a situation are the calculations of magnetic moments and hyperfine fields in the vicinity 
of an interface [7]. They require many hours of computer time even for an ideal case, i.e. in the absence 
of roughness, interdiffusion, defects and impurities. In this situation it may be important to know 
physical quantities which influence these local characteristics and can be calculated exactly, i.e. without 
any approximations. One of such quantities is a dipolar field, created by magnetic layers and acting on 
surrounding atoms of a thin film. 

In the framework of a continuous approach an infinite two-dimensional ferromagnetic layer with 
in-plain magnetization does not produce a magnetic field outside itself. Only the presence of the atomic 
structure of the matter and the localization of magnetic spins results in a magnetic field outside the layer 
[8]. Using computer calculations, it has been shown [9] that for a square lattice at a given distance from 
the layer the dipolar field is spatially periodic and decays exponentially with distance from the plane. 
However, since the dipolar interaction is of long range, a summation of dipolar fields is a very 
complicated procedure, especially if one tries to take into account surface roughness. Therefore, it is very 
useful to derive exact analytical expressions, which will provide physicists with an clear understanding of 
the result being obtained and allow them to use these expressions for the analysis of the influence of 
dipolar fields on the local magnetic properties of layered systems. 
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2. Magnetic dipolar field of a plane square lattice 

The magnetic dipolar field H created by a magnetic moment p at a distance r can be written as 
follows: 

H(r)=- $-37 . 
i 

(v)r 

I 
(1) 

In analogy with the respective electrostatic problem it is convenient to introduce a scalar potential 

@(r)=y, (2) 

correlated with the field as follows: 

H= -V@. (3) 

Let us consider a two-dimensional infinite ferromagnetic layer magnetized in plane, i.e. a plane 
consisting of a square lattice of magnetic moments p oriented in x-direction as it is shown in Fig. 1. It is 
clear from the figure that 

R= 1x7 Y, z), p= {na, ma, 01, r=R-p=(x-na, y-ma, z}, (4) 

here R determines a point where the dipolar field is calculated, p is a radius-vector of a magnetic 
moment within the plane, a is lattice parameter, II, m are integers. Therefore, the potential Q, produced 
by a square lattice of magnetic moments is given by the following expression: 

@(x,y,z)= E dx -4 

n,m= --oLI [(x-na)2+(y-ma)2+zZ]3’2’ 
(5) 

Because of slow convergence, the direct summation in formula (5) is extremely time-consuming. It is 
significantly more useful to transform (5) into a series of exponential terms. For that it is convenient to 
apply Poisson’s formula, which reduces the sum of functions f(x) at points na to the sum of their 
Fourier components: 

5 f(m) = f k& lrn f(x) exp( -ikcx) dx. 
fZ= --m m --m (6) 

Fig. 1. Plane square lattice of magnetic moments. R denotes the radius-vector of a point where the dipolar field is calculated. 
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Using (5) and (6) after sirnpl’e transformation one obtains 

cc 

I/: 

cx> 
X 

Xl 

--m -cc 
(x:+y: f2) 

3,2 ew lk--x, (- ‘,” ) exp(ilFyr) dx, dy,. 

The double integral in (7) can be calculated analytically and it is equal to 

After a straightforward transformation we finally have 

@(x, Y, 2) = T( i,sin( Gkx) exp( -$k1,\) 

sin(Gkx) cos(G$) exp(-GGG/z/)}. 

(7) 

(8) 

(9) 

The projections of the magnetic dipolar field H can be easily derived from Eq. (91 by differentiation in 
accordance with (3): 

H, = 

Hz = sign(z) ${ !glk sin( Gkx) exp( --ck\zi) 

(lOa) 

(lob) 

It is seen from Eq. (10) that the dipolar field is spatially periodic with the lattice constant a. Each 
harmonic of this periodic function falls off exponentially with the distance z from the plane. For 
practical calculations of the dipolar field beyond the plane (z 2 a) it is sufficient to take into account 
only several first harmonicas in Eq. (10). 

Using a similar technique one can derive formulas for the magnetic dipolar field produced by a 
two-dimensional infinite ferromagnetic layer magnetized perpendicular to the plain: 

H, = sign(z) F( ilk sin(Gkx) exp(-Gk\z\) 

(lla> 
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cc 

(lib) 

(llc) 

Basing on Eqs. (lo), (11) it is easy to calculate dipolar fields produced by an infinite antiferromagnetic 
layer magnetized both in and perpendicular to the plane. In order to do that one should consider the 
plane antiferromagnetic lattice as that consisting of two square sublattices with opposite orientation of 
the magnetic moments and add the contributions from both sublattices. The derived expressions may be 
also generalized to the case of the plane rectangular lattice with different periods in X- and in 
y-directions and to the more complicated cases such as, e.g., the (IlO)-plane in the bee-structure. 

3. Surface roughness 

As it is seen from the analysis made above, the magnetic dipolar field from a single atomic layer 
decreases very fast with the distance from the layer (a typical length of its decay is of the order of the 
lattice parameter a). It means that the influence of this field may be essential only within a few layers 
near the surface or the interface. Surface roughness can change the situation. If the typical lateral scale 
of surface roughness is L, then the typical distance from the rough surface, at which the dipolar field is 
damped, will be of the order of L. As experimental data show (see, for instance, Ref. [lo]), a lateral size 
of grown islands for MBE-prepared or sputtered films is much more than the lattice parameter. It means 
that in this case the dipolar field from the rough surface penetrates deep into the magnetic film and, 
therefore, can influence some of its physical properties. An example of such influence is a recently 
suggested mechanism for biquadratic interlayer coupling, connected with the dipolar field from magnetic 
layers with roughness [ll]. 

To evaluate the magnetic dipolar field produced by a rough surface one should add contributions from 
several imperfect layers. Let us assume that atomic arrangement of the imperfect layer is periodic both in 
X- and y-directions. In this case the dipolar field from such a layer can be calculated by means of the 
appropriate additional summations (or integrations at large distances z> in Eqs. (101, (111, in which the 
parameter a should be set equal to the period of the imperfect structure. 
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Fig. 2. Imperfect layer corresponding to a rough surface consisting of an array of infinitely long monoatomic terraces and valleys 
with period L and width L/2. The magnetization is supposed to be aligned in r-direction. 
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Lateral distance (ML) 

Fig. 3. Calculated profile of the magnetic dipolar field, created by the imperfect layer (Fig. 2) at various distances z for 

bee-structure of iron and L = 10 ML. 

For illustration, let us consider a rough surface consisting of an array of infinitely long monoatomic 
terraces and valleys with period L and width L/2. An imperfect layer corresponding to this roughness is 
shown in Fig. 2. Let the magnetization be oriented in x-direction. The magnetic dipolar field created by 
such monoatomic roughness can be evaluated by a summation over x and y of the dipolar fields from 
the square lattices with the lattice constant L, shifted one relatively to another (see Eq. (10) with a = L). 
The result of this calculation is presented in Fig. 3, where the dipolar field versus x at various distances 
z from rough surface is shown for bee-structure of iron and L = 10 monolayers (ML). As it is seen, when 
z = a/2 (neighbor plane for bee structure) short period oscillations connected with the atomic structure 
of the terraces and localization of spins are distinctly pronounced. These oscillations are modulated by 
the long period variation of the field caused by periodic roughness. With increasing z the short period 
oscillations are damped very sharply and only the long period variation of the field remains. In the region 
of the large distances z one can use an additional integration in Eq. (10) instead of summation. The 
result of this integration for the structure shown in Fig. 2 can be represented as follows: 

H,= - 
87-r/J * 
~k-0(-l)*i’cos(~(2k+I)x) exp(-:(2k+I)\z[), ( =a) 

H, = 0, (12b) 

HZ = sign( z ) ( 12c) 

and it practically does not distinguish from the result of the exact summation for z > 2a and L 2 4a. 
Analogous expressions can be obtained by the corresponding integration in Eq. (11) for the case when 
the magnetization is aligned perpendicular to the imperfect layer. 

Thus, as it is seen from Eq. (12), for large distances from the rough surface the dipolar field decays 
exponentially with the characteristic length L (the period of the roughness structure), i.e. it penetrates 
deep into the film material. Using Eqs. (lo), (11) more complicated cases of surface roughness can be 
analyzed. 

4. Some applications 

Here we present the values of the dipolar fields from the single atomic layer (100) for the 
bee-structure, which are essential for calculation of the demagnetizing factors [93, the surface dipolar 
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anisotropy [12] and magnetic hyperfine fields. If the magnetization is aligned within the plane in 
x-direction, as it follows from Eq. (lo), the dipolar field acting on an atom in a lattice site has the only 
nonvanishing component H,, i.e. it is oriented along or opposite the direction of the magnetic moments. 
For the atoms in the neighbor plane H, = O.O831(4aM), where M= 2p/a3 is the magnetization of the 
film having bee-structure. For the atoms in the second-neighbor plane H, = -O.O065(4~rM), and for the 
atoms in the third-neighbor plane H, = O.O002(4rrM). The dipolar field acting on an atom in the plane 
from the rest atoms of this plane is H, = O.l797(4nM). The total local field at an atom position inside 
the film is H,, = (4~/3)M. The value of H,, is equal to is the sum of the demagnetizing and Lorentz 
fields of a thin film in a continuous approach. 

If the magnetization is aligned perpendicular to the plane in z-direction, as it follows from (111, the 
only nonzero component of the dipolar field in the points of the atom location is H,. For atoms in the 
neighbor plane Hz = - O.l662(4rM), for atoms in the second-neighbor plane Hz = O.O130(47rM), and 
for atoms in the third-neighbor plane Hz = -O.OOO~(~TTM). The dipolar field acting on an atom in the 
plane from the rest atoms of this plane is H, = -0.3594(4~M). The total local field at an atom position 
inside the film is H, = -(8n/3)M. 

4.1. Surface dipolar anisotropy 

It is seen that the dipolar field acting on atoms at layers near the surface differ from that in bulk. It 
results in appearance of the surface dipolar anisotropy, connected with the discreteness of the lattice. 
The anisotropy energy is given by 

E,=(E,,-EL) sin2B, 

where 8 is the angle between the normal to the surface and the magnetization. The difference between 
the magnetostatic energies E,, and E, can be easily calculated using the values of the dipole fields given 
above. The result can be written as follows: 

E,,-EL= VK,+SK,, 

where V is the volume, Kv = -(4~M~)/2 is the usual density of the volume dipolar anisotropy of a thin 
film, S is the surface area and Ks = 0.2123(4nM2/2)a/2 is the density of the surface dipolar anisotropy. 
For the (lOO)-surface of iron one obtains KS = 0.06 erg/cm2, i.e. it is several times less than the values 
being measured in experiment [1,3]. Note that Ks calculated in [13] for the rough Fe surface (110) has 
the same order of magnitude. Evaluation of the surface dipole anisotropy caused by the localization of 
magnetic moments and by surface roughness will be performed elsewhere. 

4.2. Hyperfine fields 

The opportunity to determine local magnetic hyperfine fields at iron surfaces and interfaces and at 
layers near to them is offered by CEMS (Conversion Electron Mossbauer Spectroscopy) [2]. The natural 
linewidth of the Fe57 Miissbauer effect is 0.2 mm/s, which corresponds to 12 kG. However, the accuracy 
of the hyperfine field determination from CEMS data can reach one tenth of the natural linewidth and 
less, i.e. about 1 kG. 

The difference between the dipolar field acting on an atom in bulk and at the surface of iron is 
approximately 2 kG. It means that the dipolar field gives a visible contribution to the measured values of 
the hyperfine fields. For the interface Fe/X, where X denotes some substance, the dipolar field may be 
even several times more than 2 kG, due to, for instance, the large magnetic moment of X (e.g., p = 7~~ 
for Gd), or perpendicular orientation of the magnetic moments of iron for very thin films. Moreover, as it 
is seen from the analysis made above for the bee-structure and an (lOO)-interface the dipolar field reveals 



I.12 E. Trymbc,l /Journal of Magnetism and Magnetic Materials 130 (1994) L&L12 

an oscillating behavior within the Fe film. These oscillations will be damped out at rather small distances 
(of the order of the lattice palrameter). Nevertheless, they can be added to the RKKY-type oscillations of 
the hyperfine fields observe<: experimentally for some Fe/X systems [21. For taking into account these 
effects consideration of partizular cases is necessary. 

Another example of the possible influence of the dipolar fields is the effect of the Fe/Gd interface on 
the observed hyperfine fields which extends up to about 20 ML into the Fe film [14]. In our opinion this 
long ranging perturbation of the Fe film might be explained by the dipolar fields from a rough Fe/Gd 
interface due to the large Gd spin moment. Examination of this assumption is subject of future 
investigations. 
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