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Four-point resistivity correction factors for thin films

In this memo a short review on the calculation of the resistivity of homogeneous thin films from four-point
resistance measurements is given; it is mainly following arguments of Schroder [1] and Weller [2]1. For the
derivation of the proper resistivity correction factors we first assume a semi-infinite sample and then take
subsequently the different geometrical boundary conditions into account.
Since we are dealing with four-point probe resistivity measurements, there are four contacts at the sample – two
probes, say 1 and 4, where the current enters and leaves the sample and two probes, 2 and 3, between which
the potential difference is measured.
In an semi-infinite sample with resistivity ρ the voltage V at a point at the distance r from a contact injecting
the current I is given by

V =
Iρ

2πr
. (1)

The total voltage at a voltage probe, e.g. probe 2, in the four-point geometry is therefore given by

V2 =
Iρ

2π

(

1

r21

− 1

r24

)

, (2)

where rab is generally the distance between the contacts a and b. The minus sign accounts for the extracted
current at probe 4.
Therefore, for any arrangement of the contacts, the potential difference between probes 2 and 3 is

∆V = V2 − V3 =
Iρ

2π

(

1

r21

− 1

r24

− 1

r31

+
1

r34

)

(3)

and the resistivity ρ becomes

ρ =
2π

1/r21 − 1/r24 − 1/r31 + 1/r34

∆V

I
. (4)

If the probes are arranged on a line equidistantly (cf. Fig. 1 a)) with spacing s, equation 4 reduces to

ρedl = 2πs
∆V

I
, (5)

if one uses a standard square geometry (also with probe spacing s, cf. Fig. 1 b)), one gets

ρsq =
2πs

2 −
√

2

∆V

I
, (6)

and for the non-equidistant in-line geometry depicted in Fig. 1 c) the resistivity becomes

ρnedl =
6πs

5

∆V

I
. (7)

1All cited references can be found on the NT-nemu-disk for internal use (NT-NEMU:\research related papers and
talks\ThinFilmResistivity)
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Figure 1: Sketches of the four-point probe geometries: a) equidistant in-line probes, b) square array probes, c)
s–5s–s in-line probes

The formulae stated above are valid only for semi-infinite samples. Since real samples are thinner and have
smaller lateral dimensions additional correction factors F are introduced and

ρ = ŝF
∆V

I
, (8)

where ŝ is given by the different probe arrangements and equals the according coefficient in equations (5-7).
There are different types of correction factors from which we are considering only three: F1 accounts for the
sample thickness, F2 for the finite lateral dimensions and F3 corrects for probe placement near the sample edges.
In general these are considered to be independent and the total correction factor writes as

F = F1F2F3. (9)

In the following we will first concentrate on the factors F1 and F3 only for non-conducting substrates and
boundaries and eventually derive one single factor taking into account all three corrections.

Thickness correction factor

For the collinear equidistant probe arrangement on a sample with thickness t Albers and Berkowitz introduced
an analytical approximation for F1 [4]:

F1,AB =
t/s

2 ln (sinh (t/s) / sinh (t/2s))
, (10)

which even reduces to

F1,AB ≈ t/s

2 ln (2)
(11)

if the sample is much thinner than the probe spacing and the approximation sinh(t/s) ≈ t/s holds. It should be
emphasized again that these analytical forms are only valid for the equidistant in-line probe arrangement! To
handle also other four-point geometries a more general approach described in some detail by Weller is needed
[2]. In general Laplace’s equation for the potential has to be solved with the boundary conditions given by the
finite layer thickness. Albers and Berkowitz solved this problem [4] and the potential in the thin film (0 6 z 6 t)
as a function of the injected current I is given by

V (r, z) =

(

ρI

2π

)

∞
∫

0

{J0(kr) · cosh(k(z − t)) − J0(kr0) · cosh(kt)} dk

sinh(kt)
, (12)
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Resistivity correction factors 3

where J0 is the 0th order Bessel function and r = r0 specifies the circle on the surface (z = 0), where V = 0.
Analogous to equation (2) for each voltage probe all the potential differences resulting from the different current
injections and extractions have to be summed up. For an infinite thin layer this yields for the voltage between
the probes 2 and 3

∆V (r21, r24, r31, r34, t) = V2 − V3

=

(

ρI

2π

)

∞
∫

0

{J0(kr21) − J0(kr24) − J0(kr31) + J0(kr34)}
cosh(kt)

sinh(kt)
dk .

(13)

The rab again denote the distances between the probes a and b. Since the surface of the thin layer is probed, z
has been set to zero.
For the equidistant in-line geometry with probe distance s equation (13) reduces to

∆V (s, t) =

(

ρI

π

)

∞
∫

0

{J0(ks) − J0(2ks)} cosh(kt)

sinh(kt)
dk . (14)

Introducing the new variables κ ≡ ks and τ ≡ t/s equation (14) can be rewritten as

∆V (s, τ) =

(

ρI

2πs

)



2

∞
∫

0

{J0(κ) − J0(2κ)} cosh(τκ)

sinh(τκ)
dκ



 ≡
(

ρI

2πs

)

fedl(τ) , (15)

where it can be seen immediately that 1/fedl(τ) = F1,edl in equations (8) and (9) since the corrections made
by F2 and F3 have been neglected until now. The analytical approximation in equation (10) has in fact been
derived by solving the integral (15). Valdes [3] gave a series representation of fedl(τ), which is equivalent because
of the following arguments given by Weller [2]. First, fedl(τ) is rewritten as

fedl(τ) = 2

∞
∫

0

{J0(κ) − J0(2κ)}
(

cosh(τκ)

sinh(τκ)
− 1

)

dκ + 2

∞
∫

0

{J0(κ) − J0(2κ)} dκ . (16)

Using the identity
∫

∞

0
J0(kr)dk = 1/r with2 r = 1 and r = 2 and expressing the hyperbolic functions in terms

of exponentials3, equation (16) becomes

fedl(τ) = 1 + 4

∞
∫

0

{J0(κ) − J0(2κ)}
(

e−2τκ

1 − e−2τκ

)

dκ . (17)

The last term in parenthesis can now be identified as geometrical series and the exchange of the order of
summation and integration leads to

fedl(τ) = 1 + 4

∞
∑

n=1





∞
∫

0

{J0(κ) − J0(2κ)} e−2nτκdκ



 . (18)

The integral can now be solved analytically employing the identity

∞
∫

0

J0(ακ)e−βκdκ =
1

√

α2 + β2
(19)

and f(τ) finally yields

fedl(τ) = 1 + 4

∞
∑

n=1

(

1√
1 + 4n2τ2

− 1√
4 + 4n2τ2

)

, (20)

2Ref. [2] is wrong at this point; it is written “k = 1” and “k = 2” instead of “r = 1” and “r = 2”
3In Eqs. (14-15) of Ref. [2] the factor “2” is missing in every exponent.
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4 Resistivity correction factors

which may be calculated numerically. Of course the above derivation was done exemplary for the in-line probe
geometry, but can also be applied analogously to any other four-point geometry starting from equation (13).
The result for the square geometry then is given by

1

F1,sq

= fsq(τ) = 1 +
4

2 −
√

2

∞
∑

n=1

(

1√
1 + 4n2τ2

− 1√
2 + 4n2τ2

)

, (21)

and for the non-equidistant in-line probe array the calculation yields

1

F1,nedl

= fnedl(τ) = 1 +
12

5

∞
∑

n=1

(

1√
1 + 4n2τ2

− 1√
36 + 4n2τ2

)

. (22)
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Figure 2: Thickness correction factors F1 for the different probe geometries as a function of the normalized
sample thickness τ = t/s according to Eqs. (20-22)

Correction for probing near the edge of a sample

The factor F3 correcting for probing close to the edge of a sample is normally derived using the method
of images. That means additional to the real current probes the voltage probes see superimposed mirrored
currents originating from specular reflections at non-conducting boundaries as sketched in Fig. 3. As a result
equation (3) then contains additional terms of the mirror currents. We are not going into the details of these
calculations at this point but just give the results for the used standard geometries and the references where all
the details of the calculations may be found.
For the equidistant in-line geometry parallel to an edge and the square geometry with the distance l to the edge
and probe spacing s one finds [3]

ρedl = ρ0,edlF3 (λ) = ρ0,edl

(

1 +
2√

1 + 2λ2
− 1√

1 + λ2

)

−1

(23)

and [5]

ρsq = ρ0,sqF3 (λ) = ρ0,sq

(

2 −
√

2
)

(

2 −
√

2 +
2

1 + 2λ
− 2
√

1 + (1 + 2λ)2

)

−1

. (24)

For the non-equidistant in-line geometry one obtains

ρnedl = ρ0,nedlF3 (λ) = ρ0,nedl

(

1 +
6

5
√

1 + 4λ2
− 6

5
√

36 + 4λ2

)

−1

, (25)

where λ = l/s. ρ0,edl, ρ0,sq and ρ0,nedl are given by the equations (5-7) respectively.
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Figure 3: Sketches of the four-point probe geometries near a sample edge: a) equidistant in-line probes, b)
square array probes, c) s–5s–s in-line probes
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Figure 4: Correction factors F3 for the different probe geometries as a function of the normalized distance from
the edge λ = l/s according to Eqs. (23-25)

Correction for finite lateral dimensions

We have now determined the correction factors for the finite thickness of the sample F1 and the measurement
at a sample edge F3. The correction left is F2 to be applied for the finite lateral dimensions. The derivation of
this correction factor is as well based on the method of images and simply adding up reflected currents at all
boundaries. It can be viewed in Ref. [7]. Here we do not reproduce the calculation but go on to the calculation
of a single correction factor taking into account all lateral distances and the thickness of a square sample.

Combined correction factor

Since in all above cases only the superposition principle is applied it should also be possible to merge the
calculations of F1, F2 and F3 instead of calculating each one separately. Therefore we propose to use the
method of images from the beginning in the calculation of the thickness correction factor. This means equation
(13) gets additional terms from mirrored current sources (cf. Fig. 5) but the rest of the calculation stays the
same. In the following we will give the most important steps in this calculation for the three geometries for the
special case of a square sample where the probes are aligned parallel to one of the sides.
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6 Resistivity correction factors

Figure 5: Sketch of the first two orders of image currents to be considered for the special case of the square
probe array which is centered with respect to one side of a square sample; ‘+’ stands for injected currents, ‘−’
for extracted currents

Independent of the probe geometry one therefore gets

∆V (s, τ, λ, µ) =

(

ρI

2πs

)

(

2

∞
∫

0

{

∞
∑

v=0

∞
∑

u=0

4
∑

h=1

[

4
∑

i=1

J0

(

κ
√

vh(λ, µ) + ui(λ, µ)
)

−
8
∑

i=5

J0

(

κ
√

vh(λ, µ) + ui(λ, µ)
)

]}

cosh(τκ)

sinh(τκ)
dκ

)

≡
(

ρI

2πs

)

f̃(τ, λ, µ) ,

(26)

where again τ = t/s, λ = l/s and µ = m/s. The vh and ui are geometry dependent probe positions and will
be given later. First we expand the series and do the integration following the recipe described in equations
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(16-20) and one finally obtains

f̃(τ, λ, µ) =

∞
∑

v=0

∞
∑

u=0

{

4
∑

h=1

[

4
∑

i=1

2
√

vh(λ, µ) + ui(λ, µ)
−

8
∑

i=5

2
√

vh(λ, µ) + ui(λ, µ)

]

+4
∞
∑

n=1

(

4
∑

h=1

[

4
∑

i=1

1
√

vh(λ, µ) + ui(λ, µ) + 4n2τ2
−

8
∑

i=5

1
√

vh(λ, µ) + ui(λ, µ) + 4n2τ2

])}

.

(27)

The vh and ui are given as follows:
For the equidistant in-line probe geometry

v1 = (2vδ)2, v2 = (2vδ + 4µ − 2λ + 6)2, v3 = (2vδ + 2λ)2, v4 = (2vδ + 4µ + 6)2,

u1 = (2uδ − 1)2, u2 = (2uδ + 2µ + 5)2, u3 = (2uδ + 2µ + 1)2, u4 = (2uδ + 4µ + 7)2,

u5 = (2uδ + 2)2, u6 = (2uδ + 2µ + 2)2, u7 = (2uδ + 2µ + 4)2, u8 = (2uδ + 4µ + 4)2.

(28)

For the square probe geometry

v1 = (2vδ + 1)2, v2 = (2vδ + 4µ − 2λ + 1)2, v3 = (2vδ + 2λ + 1)2, v4 = (2vδ + 4µ + 1)2,

u1 = (2uδ)2, u2 = (2uδ + 2µ + 2)2, u3 = (2uδ + 2µ)2, u4 = (2uδ + 4µ + 2)2,

u5 = (2uδ + 1)2, u6 = (2uδ + 2µ + 1)2, u7 = (2uδ + 2µ + 1)2, u8 = (2uδ + 4µ + 1)2.

(29)

For the s–5s–s non-equidistant inline probe array

v1 = (2vδ)2, v2 = (2vδ + 4µ − 2λ + 14)2, v3 = (2vδ + 2λ)2, v4 = (2vδ + 4µ + 14)2,

u1 = (2uδ − 1)2, u2 = (2uδ + 2µ + 13)2, u3 = (2uδ + 2µ + 1)2, u4 = (2uδ + 4µ + 15)2,

u5 = (2uδ + 6)2, u6 = (2uδ + 2µ + 6)2, u7 = (2uδ + 2µ + 8)2, u8 = (2uδ + 4µ + 8)2.

(30)

δ denotes in all cases the normalized sample width, i.e. δedl = (2µ + 3), δsq = (2µ + 1) and δnedl = (2µ + 7).
The summation of equation (27) can be done numerically and summing the first five to ten terms in u and v
yields already good accuracy as can be seen in Fig. 6, where it is shown in an example how much the value of
f̃ changes when changing the maximum order of images taken into account.
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Figure 6: The geometry factor 1/f̃ as a function of the orders of image currents taken into account for the
calculation. The first three orders (0th, 1st, 2nd) are sketched in Fig. 5. The values are normalized to the value
obtained involving the thickness correction only. The parameters used for these calculations are: s = 1 mm,
t = 50 nm, l = 2 mm, sample size 1 cm2
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8 Resistivity correction factors

Given the value of f̃ from (27) for one of the probe array geometries the resistivity is calculated as

ρ =
2πs

f̃(τ, λ, µ)

∆V

I
. (31)

Now the question arises how much the correction factor f̃ varies for a finite sample with a varying distance l
of the probes to an edge of the sample. To investigate this behavior we look again at the example of a square
sample of size 1 cm2 and a thickness t = 50 nm. The probe spacing again is given by s = 1 mm and the first
six orders of image currents are taken into account. For the three discussed probe geometries the results have
been summarized in Fig. 7.
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Figure 7: The geometry factor 1/f̃ for a finite thin square sample as a function of the normalized distance to
a sample edge λ. The distances to the other edges are given by the respective probe geometry and fixed. The
parameters used for the calculations are: s = 1 mm, t = 50 nm, N = 6, sample size 1 cm2

Finally we have a look at the thickness dependence of the correction factor 1/f̃ and provide a practical formula
for each studied probe geometry which might be used for data analysis if always the same sample and probe
geometry is used and only the thicknesses of the samples vary. Since in our case most of the investigated thin
film samples have the standard size of 10 mm × 10 mm and the probe distance is s = 1 mm, we have done
the calculations for this sample size and probe spacing. Fig. 8 shows the t-dependence of the overall correction
factor 1/f̃ . Also here we have used a fixed distance to the edge of l = 2 mm as an input to the calculations and
have taken into account the first six orders of image currents.
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Figure 8: The geometry factor 1/f̃ for a finite thin square sample as a function of the normalized sample
thickness τ = t/s. The parameters used for the calculations are: s = 1 mm, l = 2 mm, N = 6, sample size
1 cm2

From a fit to the data shown in Fig. 8 we obtain the resistance-resistivity-conversion factor for thin homogeneous
films, where the square sample has the size of 1 cm2. The probe spacing is s = 1 mm and each probe array is
placed l = 2 mm away from the edge parallel to the line connecting the voltage contacts and is centered with
respect to this sample side.

ρ [mΩcm] =3.83916× 10−4 · t [nm] · Redl [Ω]

=8.28303× 10−4 · t [nm] · Rsq [Ω]

=1.07616× 10−4 · t [nm] · Rnedl [Ω]

(32)
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