
Memorandum

Datum: November 7, 2012

Von: Andreas Suter An:
Telefon: +41 (0)56 310 4238
Raum: WLGA / 119 cc:
e-mail: andreas.suter@psi.ch,

Four-Point Resistivity Correction Factors for Thin Films:

Addendum and Corrections

This memo is an extension and correction of the memo form B.M. Wojek entitled “Four-point resistivity
correction factors for thin films” from January 5, 2009. It tries to give a more general view and corrects
for errors found in the mentioned memo. The motivation was to get a proper understanding which in
turned was used to write a little ROOT/C++ class which can be used to calculate the correction factors
for any arbitrary four-point geometry on a square platelet. As described below.

The starting point of the discussion is the following formula (for references see B.M. Wojek’s
memo):

∆V = V2 − V3 =
(
ρI

2π

)∫ ∞
0

{J0(kr21)− J0(kr24)− J0(kr31) + J0(kr34)} · cosh(kt)
sinh(kt)

dk, (1)

where the geometry is shown in Fig.1. J0(x) are 0th order Bessel functions1, and rij = |~ri − ~rj |

Figure 1: four-point geometry

In the following everything will be written in normalized variables. The normalization length will be
the distance between V2 and V3 and be called

s = |~r3 − ~r2|
1not spherical Bessel functions!
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using this the following new variables will be introduced:

Rij = rij/s

τ = t/s

κ = k · s =⇒ dk =
1
s

dκ

∆V = V2 − V3 =
(
ρI

2πs

)
f(Rij , τ), (2)

where

f(Rij , τ) =
∫ ∞

0

{J0(κR21)− J0(κR24)− J0(κR31) + J0(κR34)}· cosh(κτ)
sinh(κτ)

dκ = f1(Rij , τ)+f2(Rij , τ)

(3)
where the additional functions fk(Rij , τ) are defined as

f1(Rij , τ) =
∫ ∞

0

{J0(κR21)− J0(κR24)− J0(κR31) + J0(κR34)} ·
[

cosh(κτ)
sinh(κτ)

− 1
]

dκ

f2(Rij , τ) =
∫ ∞

0

{J0(κR21)− J0(κR24)− J0(κR31) + J0(κR34)} dκ

To simplify f2(Rij , τ) the following identity can be used∫ ∞
0

J0(κr) dκ =
1
r
,

and therefore

f2(Rij , τ) =
1
R21
− 1
R24
− 1
R31

+
1
R34

. (4)

To simplify f1(Rij , τ) the following two identities can be used

[
cosh(κτ)
sinh(κτ)

− 1
]

=
2

−1 + e2κτ
= 2

∞∑
h=1

e−2hτκ

∫ ∞
0

J0(κr) e−βκ dκ =
1√

r2 + β2

resulting in

f1(Rij , τ) = 2
∞∑
h=1

[
1√

R2
21 + (2hτ)2

− 1√
R2

24 + (2hτ)2
− 1√

R2
31 + (2hτ)2

+
1√

R2
34 + (2hτ)2

]
(5)

In order to handle all the boundary conditions, the concept of mirror currents will be used. Before
starting the description, a few more abbreviations will be introduced:

Λ = L/s; λ± = `±/s; µ± = m±/s,

where “+” refers to I+ and “−” to I−.
Fig. 2 shows the original four-point arrangement, here as equidistant inline arrangement (s−s−s),

together we all mirror currents (here up to 2nd order). In principle one has to take all orders of mirror
currents, resulting in an infinite filling of the plane. As can be seen, this tiling of mirror currents can
be arranged into 4 sub-lattices, depicted with the colors: green, red, blue, and yellow.

— Andreas Suter – November 7, 2012—
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Figure 2: mirror currents

The potential points V2 and V3 have the coordinates:

V2 : ~r2 = (x2, y2)
V3 : ~r3 = (x3, y3)

The 0th order current points (i.e. the real ones), have the coordinates:

I+ : ~r1 = (x1, y1)
I− : ~r4 = (x4, y4)

The different sub-lattices have therefore the following coordinates:
F Sub-lattice green:

~rn,m1,4;g = ~r1,4 + 2nΛêx + 2mΛêy,

and therefore

Rn,m21;g = |~r2 − ~rn,m1;g | =
√

(x2 − x1 − 2nΛ)2 + (y2 − y1 − 2mΛ)2

Rn,m24;g = |~r2 − ~rn,m4;g | =
√

(x2 − x4 − 2nΛ)2 + (y2 − y4 − 2mΛ)2

F Sub-lattice red:
~rn,m1,4;r = ~r1,4 + 2(λ± + nΛ)êx + 2mΛêy,

and therefore

Rn,m21;r = |~r2 − ~rn,m1;r | =
√

(x2 − x1 − 2[λ+ + nΛ])2 + (y2 − y1 − 2mΛ)2

Rn,m24;r = |~r2 − ~rn,m4;r | =
√

(x2 − x4 − 2[λ− + nΛ])2 + (y2 − y4 − 2mΛ)2

— Andreas Suter – November 7, 2012—
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F Sub-lattice blue:

~rn,m1;b = ~r1 + 2nΛêx + 2[Λ− µ+ +mΛ]êy
~rn,m4;b = ~r4 + 2nΛêx + 2[µ− +mΛ]êy

and therefore

Rn,m21;b = |~r2 − ~rn,m1;b | =
√

(x2 − x1 − 2nΛ)2 + (y2 − y1 − 2[(1 +m)Λ− µ+])2

Rn,m24;b = |~r2 − ~rn,m4;b | =
√

(x2 − x4 − 2nΛ)2 + (y2 − y4 − 2[mΛ + µ−])2

F Sub-lattice yellow:

~rn,m1;y = ~r1 + 2[λ+ + nΛ]êx + 2[Λ− µ+ +mΛ]êy
~rn,m4;y = ~r4 + 2[λ− + nΛ]êx + 2[µ− +mΛ]êy

and therefore

Rn,m21;y = |~r2 − ~rn,m1;y | =
√

(x2 − x1 − 2[λ+ + nΛ])2 + (y2 − y1 − 2[(1 +m)Λ− µ+])2

Rn,m24;y = |~r2 − ~rn,m4;y | =
√

(x2 − x4 − 2[λ− + nΛ])2 + (y2 − y4 − 2[mΛ + µ−])2

To calculate f(Rij , τ) in all orders, Rij in Eqs.(4)&(5) have to be considered as function of n and
m as well. f(Rij , τ) is hence a sum over all the mirror current tiles

f(Rij , τ) =
∑

over all tiles

f(Rn,mij , τ).

There is a small complication here; since in each order one has to sum over a square, the different
sub-lattices do not run over the exactly same (n,m)-indices range. The summation ranges are listed
below.
• green summation range (see also Fig. 2):

n = −N . . .+N

m = −N . . .+N

• red summation range:

n = −N . . .+ (N − 1)
m = −N . . .+N

• blue summation range:

n = −N . . .+N

m = −N . . .+ (N − 1)

• yellow summation range:

n = −N . . .+ (N − 1)
m = −N . . .+ (N − 1)

Fig. 3 shows up to which order to summation is needed until the geometry factor 1/f(Rij , τ)
converges. Typically N = 6 is good enough. The results shown here show the same trend as Fig.6 in
B.M. Wojek’s memo.
From a fit to the data shown in Fig. 4 the resistance to resistivty conversion factor for a thin
homogeneous film on a square substrate (L× L = 1× 1 cm2) is obtained.
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Figure 3: Geometry factor 1/f(Rij , τ) as function of the orders of image currents. The parameters
are (thickness always 50 nm, substrate size L = 10 mm): (i) line array s − s − s, s = 1 mm: ~r1 =
(8 mm, 2.5 mm), ~r2 = (8 mm, 4.5 mm), ~r3 = (8 mm, 5.5 mm), ~r4 = (8 mm, 6.5 mm). (ii) line array
s/5 − s − s/5, s = 5 mm: ~r1 = (8 mm, 1.5 mm), ~r2 = (8 mm, 2.5 mm), ~r3 = (8 mm, 7.5 mm), ~r4 =
(8 mm, 8.5 mm). (iii) square array, s = 1 mm: ~r1 = (7 mm, 4.5 mm), ~r2 = (8 mm, 4.5 mm), ~r3 =
(8 mm, 5.5 mm), ~r4 = (7 mm, 5.5 mm). (iv) line array s − s − s, s = 2.5 mm: ~r1 = (8 mm, 1.25 mm),
~r2 = (8 mm, 3.75 mm), ~r3 = (8 mm, 6.25 mm), ~r4 = (8 mm, 8.75 mm).

ρ [mΩcm] = 3.85× 10−4 · t [nm] ·R[Ω], for the situation (1)
= 8.30× 10−4 · t [nm] ·R[Ω], for the situation (2)
= 1.08× 10−4 · t [nm] ·R[Ω], for the situation (3)
= 2.45× 10−4 · t [nm] ·R[Ω], for the situation (4)
= 2.01× 10−4 · t [nm] ·R[Ω], for the situation (5)
= 1.74× 10−4 · t [nm] ·R[Ω], for the situation (6)

(1) see Fig. 5 (a), s = r23 = 1 mm, ` = 2 mm, m = 3.5 mm

(2) see Fig. 5 (b), s = r23 = 1 mm, ` = 2 mm, m = 4.5 mm

(3) see Fig. 5 (c), s = r23 = 5 mm, ` = 2 mm, m = 1.5 mm, α = 5

(4) see Fig. 5 (a), s = r23 = 2.5 mm, ` = 2 mm, m = 1.25 mm

(5) see Fig. 5 (a), s = r23 = 2.5 mm, ` = 1 mm, m = 1.25 mm

(6) see Fig. 5 (c), s = r23 = 2.5 mm, ` = 2 mm, m = 2.25 mm, α = 5/3
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Figure 4: The geometry factor 1/f for the arrangements given above. Calculated in order N = 6.

Figure 5: Pin arrangements as used for the above calculations.
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Comments to B.M. Wojek’s Memo: “Four-Point Resistivity Correction Fac-
tors for Thin Films”

1. All the graphs shown in B.M. Wojek’s memo seem to be OK.

2. The results obtained by Eqs. (27) to (30) are consistent with those presented in this memoran-
dum. However, the use of “vertical parameters” to represent “horizontal distances” is confusing.

3. The variable s is defined “locally” for each geometry but it is not used coherently throughout
the memorandum in a “global” sense. The most coherent definition in terms of a generalization
is given by s = |~r2 − ~r3|. Therefore, the so-called s − 5s − s geometry would better be treated
as s/5− s− s/5. The way B.M. Wojek’s memo is written this is, unfortunately not possible.

Program which can be used to Calculate the Thin Film Correction Terms
for Arbitrary Pin Arrangement

Under <what_ever>/analysis/root/macros you will find a file resistivity.C which consists out
of two parts: (i) a class called PResistivity which does all the calculations needed, and a simple
function resistivity which can be used to feed the parameters and start the calculation. In order
to do so, start ROOT, then follow the Instructions below.

[nemu@pcXXXX macros]$ root -l

root [0] .L resistivity.C++

Info in <TUnixSystem::ACLiC>: creating shared library /home/nemu/analysis/root/macros/./resistivity_C.so

root [1] resistivity(6, 1.0, 50e-9, 10e-3, 8e-3, 1.25e-3, 8e-3, 8.75e-3, 8e-3, 3.75e-3, 8e-3, 6.25e-3)

s=0.0025

normalized size =4

fLambdaP =0.8

fLambdaM =0.8

fMuP =0.5

fMuM =0.5

---

R21g(0,0)=1

R24g(0,0)=2

R31g(0,0)=2

R34g(0,0)=1

N=0: 1/F1=1.44287e-05

N=1: 67692.8, 28296.6, 19510.3, 10871.4,

N=1: 1/F1=7.91321e-06, result0/result=0.548437

N=2: 67139.4, 28302.3, 21368.9, 11567.7,

N=2: 1/F1=7.78948e-06, result0/result=0.539861

The function resistivity has the following arguments:

Double_t resistivity(UInt_t order, // up to which order the correction shall be calculated

Double_t resistance, // resistance given in (Ohm)

Double_t thickness, // film thickness given in (m)

Double_t L, // size of the square substrate in (m)

Double_t xIp, // I_+ x-coordinate

Double_t yIp, // I_+ y-coordinate

Double_t xIm, // I_- x-coordinate

Double_t yIm, // I_- y-coordinate

Double_t xV2, // V_2 x-coordinate

Double_t yV2, // V_2 y-coordinate

Double_t xV3, // V_3 x-coordinate

Double_t yV3) // V_3 y-coordinate
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