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Pippard’s non-local effect in the case of diffuse scattering

A weak external magnetic field acts on the ground state of the superconductor as a perturbation.
Within a perturbation expansion one can show [1, 2, 3] that the following non-local relation
between the supercurrent density j and the vector potential A holds (in Coulomb gauge ∇·A =
0):

jα(r) = −
∑

β

� [
Rαβ(r − r′)− e2nS

m∗ δ(r − r′)δαβ

]

︸ ︷︷ ︸
=: Kαβ(r − r′)

Aβ(r′) dr′ (1)

where e is the electron charge, nS the supercarrier density, m∗ the effective electron mass, and
∇∧A = B. The first term in the square brackets, Rαβ , describes the paramagnetic response,
whereas the second reflects the diamagnetic one. Kαβ is called the kernel. If the wave function
of the electronic ground-state were “rigid” with respect to all perturbations (rather than only
those which lead to transverse excitations) Rαβ would be identically zero and Eq.(1) would
reduce to the local j-A relation

jα(r) = − 1
µ0λ2

L

Aα(r) (2)

with µ0 the magnetic permeability of the vaccum. This combined with the Maxwell equation
∇∧B = µ0j yields, at a plane superconductor-vacuum interface, the result of an exponentially
suppressed magnetic field

B(z) = Bext exp(−z/λL) (3)

with the London penetration depth λL =
√

m∗

µ0e2nS
, which is the well known result.

However, Rαβ has a range of the order of the diameter of the Cooper pairs, i.e. of the
coherence length ξ. The magnetic penetration depth sets the length scale for the decay of the
magnetization; for λ À ξ the spatial variation of the vector potential A over the superconduct-
ing pairs is negligible and the one-parameter local description of Eq.(2) holds. If ξ & λ the full
non-local description has to be taken into account.

Using the Maxwell equation and the relation between A and B, Eq.(1) transforms to an
integro-differential equation

[∇∧∇ ∧A]α (r) = −
∑

β

�
Kαβ(r − r′)Aβ(r′)d3r′ (4)

This equation can be solved if the boundary conditions are known. For two different boundary
conditions Eq.(4) has been discussed [4, 5, 6, 7], which are:
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• Specular Reflection, i.e. the electrons, Cooper pairs are perfectly reflected from the
interface (incoming angle = outgoing angle). In this case Eq.(4) can be simplified by the
aim of Fourier transform methods.

• Diffuse scattering, i.e. the electrons, Cooper pairs lose all their memory upon scattering
on the interface.

The diffuse scattering case is mathematical the more difficult one and will be discussed here.
The boundary condition for diffuse scattering at the interface and further assuming a isotropic
kernel leads to

∇∧∇ ∧A(r) = −
D�

0




∞�
0

K(r − r′)A(r′) d2r′xy


 dr′z (5)

assuming a thin film of thickness D. This simplifies to

d2

dx2
Ay(z) =

� D

0

K(|z − z′|)Ay(z) dz (6)

with the Pippard kernel

K(|z|) =
3
4

1
ξ0λ2

� ∞

1

(
1
t
− 1

t3

)
e−|z|t/ξ dt (7)

By introducing a set of dimensionless variables

s = z/ξ

∆ = D/ξ

α =
3
4

ξ3

ξ0λ2

F (s) =
Ay(z)
ξBext

k(|s|) =
4
3

ξ0λ
2K(|z|)

Eq.(7) transforms into

F ′′(s) = α

� ∆

0

k(|s− s̃|)F (s̃) ds̃ (8)

F ′(0) = F ′(∆) = 1 (9)
F (0) = 1/2 (10)

and ′ is a derivative with respect to s. F (s) can be written as

F (s) = ψ(s)− ψ(∆− s) (11)

thus, it is enough to solve the equation for ψ(s).
The equation was solved numerically by dividing the film thickness ∆ into n intervals of the

length l = ∆/n. Using the abbreviation ψ(k · l) = ψk, (k = 0, . . . , n), the second derivative can
be approximated as

ψ′′k '
1
l2

(ψk+1 − 2ψk + ψk−1) (12)

In order to implement the right hand side of Eq.(8) efficiently, the following identities are useful
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Figure 1: Shows the different relevant functions involved in the calculations.

v(s) = −v(−s) =
� s

0

k(|t|) dt =

2
3

+
1
6

e−s [s(s− 1)− 4]− 1
6
s(s2 − 6)Γ(0, s) (13)

w(s) = +w(−s) =
� s

0

v(t) dt =

1
12

(8s− 3) +
1
24

e−s(s3 − s2 − 10s + 6)− 1
24

s2(s2 − 12)Γ(0, s) (14)

for s ≥ 0, and where

Γ(a, s) =
� ∞

s

ta−1e−t dt (15)

is the incomplete gamma function. The advantage of using v(s) and w(s) is that these functions
are well behaved in the whole variable range, whereas Γ(0, s) diverges for s → 0. The functions
v(s) and w(s) are shown in Fig.1.
Due to their definition it follows that k(s) = v′(s) = w′′(s) and therefore by partial integration

� ∆

0

k(|s− s̃|)ψ(s̃) dt = v(s̃− s)ψ(s̃)
∣∣∣∣
∆

0

−
� ∆

0

v(s̃− s)ψ(s̃) dt

= vn−iψn − v−iψ0 −
n−1∑

k=0

1
l

(ψk+1 − ψk) · (wk+1−i − wk−i). (16)

Eqs.(12) and (16) together with Eq.(8) lead to the following set of linear equations

— Andreas Suter – 17th June 2004—
PAUL SCHERRER INSTITUT



4 Pippard non-local diffuse scattering

1
αl2

[ψi+1 − 2ψi + ψi−1] = ψ0

=: ai︷ ︸︸ ︷
[−v−i +

1
l
(w1−i − w−i)]+

+
n−1∑

k=0

ψk
1
l
[wk+1−i − 2wk−i + wk−1−i]

︸ ︷︷ ︸
=: cki

+ψn [vn−i − 1
l
(wn−i − wn−1−i)]

︸ ︷︷ ︸
=: bi

(17)

The boundary conditions translate into

ψ′(0) =
1
2l

[−3ψ0 + 4ψ1 − ψ2] = 0 (18)

ψ′(∆) =
1
2l

[−3ψn − 4ψn−1 + ψn−2] = 1. (19)

This equations can be written in matrix form

(D − C)ψ = d, (20)

where

D =
1

αl2




0 0 0 . . . 0 0 0
1 −2 1 0 . . . 0 0
0 1 −2 1 0 . . . 0
...

...
0 0 . . . 0 1 −2 1
0 0 0 . . . 0 0 0




(21)

C =




−3/(2l) 4/(2l) −1/(2l) 0 . . . 0 0
a1 c11 c21 c31 . . . cn−1,1 b1

a2 c12 c22 c32 . . . cn−1,2 b2

...
...

an−1 c1,n−1 c2,n−1 c3,n−1 . . . cn−1,n−1 bn−1

0 0 . . . 0 1/(2l) −4/(2l) 3/(2l)




(22)

d =
[
0 0 0 . . . 0 0 1

]
︸ ︷︷ ︸

n + 1 elements

(23)

The first (k = 0) and the last row (k = n) are due to the boundary conditions of Eqs.(18) and
(19). The values for ai, bi, and cki are defined in Eq.(17).

Numerical Implementation

In order to solve the set of linear equations Eq.(20), I used the nag libraries [8]. For the
incomplete gamma function, the routines s14bac and s14aac were used. In order to solve
explicitly Eq.(20), the routines f03afc and f04ajc were used.
The fitting has been implemented in ROOT [9] using the TMinuit class.
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