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London theory including the reduction of the orderparam-
eter at the interface

The 2nd London equation for a semiinfinite interface has the form

d2A

dz2
=

4µ0e
2|Ψ∞|2
m

A(z) =
1
λ2

L

A(z). (1)

where |Ψ∞|2 is the superfluid density, assumed to be constant in the London model.
In the following A′ = dA/dz will be used. The boundary conditions are deduced in the following
way. The London gauge requires ∇ · A = 0, hence A(z) = A0 + B0z, ∀z < 0, where B0 is the
externally applied magnetic field. In order to merge the solutions at the interface =⇒ A0 =
−λLB0 [1], and therefore the boundary conditions are

A(0) = −λLB0 (2)
A′(0) = B0 (3)

which results in the well known

A(z) = −λLB0 exp(−z/λL) (4)

and therefore

B(z) = A′(z) = B0 exp(−z/λL) (5)

Within Ginzburg-Landau theory, one can show that the orderparameter Ψ∞f(z) will de-
crease when reaching the interface [1, 2]. Under the assumption that λL → 0 an finds a
functional form of f(z)

f(z) = tanh
[

z√
2ξ(T )

]
(6)

where ξ(T ) is the Ginzburg-Landau coherence length. Utilizing this result, Eq.(1) can be
rewritten as

A′′(z) =
[
f(z)
λL

]2

A(z). (7)

This differential equation is a gross oversimplification, since it ignores that non-local effects
should be taken into account and further λL is finite. Still it is going to be interesting to see the
outcome of Eq.(7) to get a feeling how the magnetic field will penetrate the superconductor.
Unfortunately, Eq.(7) can only be solved numerically. I used Mathematica for this purpose.
The used code is given in Sec.A. Fig.1 shows a typical B(z) for ξ(T ) = 1 and λL = 0.3. As
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Figure 1: Left graph: Comparison between the exponential decay and the result of Eq.(7) for
ξ(T ) = 1 and λL = 0.3. Right graph: Only B(z) as from Eq.(7) (notice the scale!).

can been seen the magnetic field is penetrating almost unhindered the superconductor. Since
this crude model is maximal valid for values z < λL only this part is shown. The trend is
exactly as expected: The reduction of the superfluid density close to the surface decreases the
screening and hence the field penetrates easily. That it is such a drastic effect is only since the
model ignores non-local effects and therefore neither f(z) (which would have to be estimated
self-consistently) nor B(z) can be correct and only can show a trend.

A Mathematica Code to implement Eq.(7)

In[1]:= f = Tanh[z/Sqrt[2]/xi]

In[2]:= param = {xi -> 1, lambdaL -> 0.3}

In[3]:= deq = {A’’[z] - (f/lambdaL)^2 A[z] == 0 /. param, A[0] == -lambdaL /. param, A’[0] == 1}

In[4]:= solution = NDSolve[deq, A, {z, 0, lambdaL /. param}]

In[5]:= Plot[{A[z] /. solution, -lambdaL Exp[-z/lambdaL] /. param}, {z, 0,

lambdaL /. param}, PlotRange -> All]

In[6]:= Plot[{A’[z] /. solution, Exp[-z/lambdaL] /. param}, {z, 0, lambdaL /. param},

PlotRange -> All]

In[7]:= BB = Table[{z, (Log[A’[z] /. solution])[[1]]}, {z, 0, lambdaL /. param,

lambdaL/100 /. param}];

In[8]:= EE = Table[{z, Log[Exp[-z/lambdaL] /. param]}, {z, 0, lambdaL /. param,

lambdaL/100 /. param}];

In[9]:= << Graphics‘MultipleListPlot‘

In[10]:= MultipleListPlot[BB, EE, PlotStyle -> {RGBColor[1, 0, 0], RGBColor[0, 0, 0]}]
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