

Getting Started Manual

WaveRunner 6 Zi

Oscilloscopes

February, 2011

LeCroy Corporation 700 Chestnut Ridge Road Chestnut Ridge, NY, 10977-6499 Tel: (845) 578-6020, Fax: (845) 578 5985

Warranty

NOTE: THE WARRANTY BELOW REPLACES ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS, OR ADEQUACY FOR ANY PARTICULAR PURPOSE OR USE. LECROY SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN CONTRACT OR OTHERWISE. THE CUSTOMER IS RESPONSIBLE FOR THE TRANSPORTATION AND INSURANCE CHARGES FOR THE RETURN OF PRODUCTS TO THE SERVICE FACILITY. LECROY WILL RETURN ALL PRODUCTS UNDER WARRANTY WITH TRANSPORT PREPAID.

The oscilloscope is warranted for normal use and operation, within specifications, for a period of three years from shipment. LeCroy will either repair or, at our option, replace any product returned to one of our authorized service centers within this period. However, in order to do this we must first examine the product and find that it is defective due to workmanship or materials and not due to misuse, neglect, accident, or abnormal conditions or operation.

LeCroy shall not be responsible for any defect, damage, or failure caused by any of the following: a) attempted repairs or installations by personnel other than LeCroy representatives or b) improper connection to incompatible equipment, or c) for any damage or malfunction caused by the use of non-LeCroy supplies. Furthermore, LeCroy shall not be obligated to service a product that has been modified or integrated where the modification or integration increases the task duration or difficulty of servicing the oscilloscope. Spare and replacement parts, and repairs, all have a 90-day warranty.

The oscilloscope's firmware has been thoroughly tested and is presumed to be functional. Nevertheless, it is supplied without warranty of any kind covering detailed performance. Products not made by LeCroy are covered solely by the warranty of the original equipment manufacturer.

Internet: www.lecroy.com

© 2011 by LeCroy Corporation. All rights reserved.

LeCroy, ActiveDSO, JitterTrack, WavePro, WaveMaster, WaveSurfer, WaveLink, WaveExpert, Waverunner, and WaveAce are registered trademarks of LeCroy Corporation. Other product or brand names are trademarks or requested trademarks of their respective holders. Information in this publication supersedes all earlier versions. Specifications are subject to change without notice.

Manufactured under an ISO 9000 Registered Quality Management System.

Visit <u>www.lecroy.com</u> to view the certificate.

This electronic product is subject to disposal and recycling regulations that vary by country and region. Many countries prohibit the disposal of waste electronic equipment in standard waste receptacles. For more information about proper disposal and recycling of your LeCroy product, please visit <u>www.lecroy.com/recycle</u>.

WR6Zi-GSM-E RevA 918908-00 RevA

TABLE OF CONTENTS

Welcome 2
WaveRunner 6 Zi Features2
Core Oscilloscope Functions2
Compatible Options and Accessories2
Reference2
Support2
Thank You3
Safety Requirements3
Safety Symbols3
Operating Environment5
Safety Certification6
Cooling7
AC Power Source7
Power Consumption8
Power and Ground Connections8
Calibration11
Cleaning11
Abnormal Conditions12
Hardware13
Front Panel13
Rotating and Tilting the Display14
I/O Panel17
Back Panel18
Basic Controls 19
Hardware and Software Controls19
Front Panel Controls19
Front Panel Groupings20

Trigger Front Panel Controls 21	
Horizontal Front Panel Controls	
Vertical Front Panel Controls	
Math, Zoom, and Memory Indicators and Controls 24	
The WavePilot Control Area and The SuperKnob 25	
Probe and Signal Connection Interfaces	
Probe and Signal Connection Interfaces Overview 32	
Probe Interfaces	
Probe Interfaces Overview	
ProBus Probe and Cable Connecting Interface 35	
Probes	
Passive Probe Compensation	
Display Dashboard	
Display Dashboard Overview	
Screen Layout, Groupings, and Controls	
Menu Bar 39	
The Quick Access Toolbar 39	
The Signal Display Grid40	
Signal Display Grid Pop-Up Menu	
Trace Descriptor Labels	
Actions for Trace Buttons 44	
Annotating Traces 44	
Dialog Area 46	
Touch Screen Controls 46	
Actions for Trace Buttons51	
Message Bar 52	
Turning on Channels and Traces52	
Timebase	
Timebase Overview54	

Timebase Setup and Control54
Sampling Modes55
Sampling Modes Overview55
Selecting a Sampling Mode55
Single-shot Sampling Mode55
Basic Capture Technique55
Sequence Display Modes58
Sequence Mode Setup59
Zooming Segments in Sequence Mode61
Displaying an Individual Segment62
Viewing Time Stamps63
RIS Sampling Mode - For Higher Sampling Rates63
Roll Mode64
Vertical
Adjusting Sensitivity and Position66
Adjusting Sensitivity66
Adjusting the Waveform's Position66
Coupling67
Overload Protection67
Setting Coupling67
Probe Attenuation67
Setting up Probe Attenuation67
Bandwidth Limits68
Setting Bandwidth Limits68
Linear and (SinX)/X Interpolation69
Interpolation Setup69
Inverting Waveforms69
Finding Scale69
Using Find Scale69

	Variable Gain	. 69
	Enabling Variable Gain	. 70
	Channel Deskew	. 70
	Channel Deskew Setup	. 70
Trig	ger	. 71
	Trigger Overview	. 71
	Trigger Types	. 71
	Edge	. 72
	Width	. 72
	Pattern (Logic)	. 72
	Smart	. 72
	Measurement	. 74
	TV	. 74
	MulitStage	. 75
	Serial Trigger	. 76
	Trigger Settings	. 76
	Trigger Setup	. 77
	Optimize for HF	. 81
	Width Condition is	. 82
	Holdoff by Time or Events	. 82
	Auxiliary Input Trigger	. 84
	TriggerScan	. 85
	Training TriggerScan	. 86
	Starting TriggerScan	. 87
	Saving TriggerScan Setups	. 88
Viev	wing Waveforms	. 88
	Display	. 88
	Display Overview	. 88
	Display Setup	. 89

Moving Traces from Grid to Grid92
Displays Containing Masks92
Dual Display Grid Selection93
Persistence94
Persistence Overview94
Persistence Setup94
WaveStream Display Mode96
Adjusting Trace Intensity96
Zooming Waveforms 97
Zooming Waveforms Overview97
Previewing Zoomed Waveforms98
Zooming a Single Channel98
Touch-and-Drag Zooming100
Turning Off Zoom101
Measuring with Cursors102
Measuring with Cursors Overview102
Cursor Measurement Icons102
Cursors Setup103
Quick Display103
Absolute Cursors Setup103
Setting Up Relative Cursors104
Cursors on Math Functions104
Measurement Parameters105
Measurement Parameters Overview105
Turning On Parameters105
Quick Access to Parameter Setup Dialogs105
Parameter Setup106
Measure Modes108
Standard Vertical Parameters108

Standard Horizontal Parameters 108	
Selecting Measure Modes108	
Help Markers 108	
Help Markers Setup 110	
Measurement Parameter Analysis 111	
Measurement Parameter Analysis Overview 111	
Creating and Viewing a Histogram 113	
Single Parameter Histogram Setup 114	
Viewing Thumbnail Histograms (Histicons) 118	
Persistence Histogram 119	
Persistence Trace Range 120	
Persistence Sigma 120	
Creating and Viewing a Trend 120	
Creating a Track View121	
Pass-Fail Parameter Testing 122	
Pass/Fail Parameter Testing Overview	
Testing and Enabling Pass/Fail Conditions	
Pass/Fail Setup on Qx Dialogs	
The Actions Dialog128	
Math 131	
Math Traces and Functions Overview	
Math Setup132	
Mask Testing 134	,
Creating a Mask134	
Quick Access to Pass/Fail Setup Dialogs	J
Removing a Mask from the Display	ļ
Right-Hand Dialogs137	
WaveScan Overview139	1
Signal Views140	ļ

Search Modes	140
Parameter Measurements	141
Sampling Mode	141
Customization Overview	142
Documenting Your Work Using LabNotebook	144
LabNotebook Overivew	144
LabNotebook	145
Save/Recall	149
Save/Recall Overview	149
Saving and Recalling Setups	150
Saving Oscilloscope Setup(s)	150
Recalling Oscilloscope Setup(s)	150
Recalling Default Settings	151
Saving and Recalling Waveforms	152
Saving Waveforms	152
Recalling Waveforms	155
Utilities	157
Utilities Setup	157
Utilities Overview	157
Utilities	157
Status	159
Remote Communication	159
Printing and Hardcopy Functions	161
Aux Output	169
Date and Time	171
Options	172
Disk Utilities	172
Preferences	174
Preference Setup Overview	174

Preferences	174
Acquisition	175
E-Mail	177
Color	179
Miscellaneous	180
System Recovery Tool	180
Restoring Software Using the Acronis Application	180
Restarting the Application	184
Restarting the Operating System	184
Reference	185
WaveRunner 6 Zi Specifications	185
CERTIFICATIONS	185
CE Declaration of Conformity	185
EMC Directive	185
Low-Voltage Directive	186
UL and cUL	187
Contact LeCroy for Support	188
Windows [®] License Agreement	202
Index	203

Welcome

Thank you for purchasing a LeCroy product. We're certain you'll be pleased with the detailed features so unique to our instruments.

This *WaveRunner 6 Zi Online Help* file may be accessed from your oscilloscope with the intention of Operator's Manual usage. Sections can be printed and the file itself can be saved to a USB memory device.

The information/content in this help file is arranged in the following manner:

WaveRunner 6 Zi Features

First, we cover the hardware and software features of your instrument in the following sections:

- Hardware
- Basic Controls
- Probe and Signal Connection Interfaces
- Display Dashboard
- Turning on Channels and Traces

Core Oscilloscope Functions

This section covers the core functions of LeCroy oscilloscopes.

Compatible Options and Accessories

Subsequent sections demonstrate the related **Options** and **Accessories** available for your product.

Reference

The Reference section is set aside and covers items like <u>Technical</u> <u>Support</u> contact information and <u>Safety Requirements</u>. The LeCroy website at <u>www.lecroy.com</u> always maintains the most current specification information. The website should always be checked for frequent updates.

Support

When your product is delivered, verify that all items on the packing list or invoice copy have been shipped to you.

Contact your nearest LeCroy customer service center or national distributor if anything is missing or damaged. If there is something missing or damaged, and you do not contact us immediately, we cannot be responsible for replacement.

Thank You

We truly hope these materials provide increased comprehension when using LeCroy's fine products.

Sincerely,

Sail May

David C. Graef LeCroy Corporation *Vice President and Chief Technology Officer*

Safety Requirements

This section contains information and warnings that must be observed to keep the instrument operating in a correct and safe condition. You are required to follow generally accepted safety procedures in addition to the safety precautions specified in this section.

Safety Symbols

Where the following symbols appear on the instrument's front or rear panels, or in this manual, they alert you to important safety considerations.

This symbol is used where caution is required. Refer to the accompanying information or documents in order to protect against personal injury or damage to the instrument.

This symbol warns of a potential risk of shock hazard.

This symbol is used to denote the measurement ground connection.

This symbol is used to denote a safety ground connection.

On (Supply). This is the AC mains connect/disconnect switch at the back of the instrument (if provided).

Off (Supply). This is the AC mains connect/disconnect switch at the back of the instrument (if provided).

ഗ

This symbol shows that the switch is a Standby (power) switch located on the front of the oscilloscope. Pressing this button toggles the oscilloscope's state between operating and Standby mode. This switch is not a disconnect device. The instrument can only be placed in a complete Power Off state by flipping the main power switch on the rear of the instrument (if provided) to the off (Zero) position or by removing the power cord. In cases where no main power switch is provided, removing the main power cord is the disconnect device.

This symbol is used to denote Alternating Current.

CAUTION

The **CAUTION** sign indicates a potential hazard. It calls attention to a procedure, practice or condition which, if not followed, could possibly cause damage to equipment. If a CAUTION is indicated, do not proceed until its conditions are fully understood and met.

WARNING

The **WARNING** sign indicates a potential hazard. It calls attention to a procedure, practice or condition which, if not followed, could possibly cause bodily injury or death. If a WARNING is indicated, do not proceed until its conditions are fully understood and met.

CAT I

Installation (Overvoltage) Category rating per EN 61010-1 safety standard and is applicable for the oscilloscope front panel measuring terminals. **CAT I** rated terminals must only be connected to source circuits in which measures are taken to limit transient voltages to an appropriately low level.

Operating Environment

The instrument is intended for indoor use and should be operated in a clean, dry environment. Before using this product, ensure that its operating environment is maintained within these parameters:

Temperature: 5 to 40 °C.

Humidity: Maximum relative humidity 80 % for temperatures up to 31 °C decreasing linearly to 50 % relative humidity at 40 °C (or at the upper operational temperature limit).

Altitude: Up to 10,000 ft (3,048 m) at or below 25 °C.

Note: Direct sunlight, radiators, and other heat sources should be taken into account when assessing the ambient temperature.

The oscilloscope must not be operated in explosive, dusty, or wet atmospheres.

Protect the oscilloscope's display touch screen from excessive impacts with foreign objects.

Do not exceed the maximum specified front panel terminal voltage ratings. Refer to Specifications for more details. The specifications for maximum allowable voltages are located on a label on the front of the oscilloscope.

Safety Certification

The design of the instrument has been verified to conform to applicable EN 61010-1, UL 61010-1 2nd Edition and CSA C22·2 No·61010-1-04 safety standards for the following limits:

- Installation (Overvoltage) Categories II (Mains Supply Connector) & I (Measuring Terminals).
- Pollution Degree 2.
- Protection Class I.

PLEASE NOTE THE FOLLOWING:

- Installation (Overvoltage) Category II refers to local distribution level, which is applicable to equipment connected to the mains supply (AC power source).
- Installation (Overvoltage) Category I refers to signal level, which is applicable to equipment measuring terminals that are connected to source circuits in which measures are taken to limit transient voltages to an appropriately low level.

- Pollution Degree 2 refers to an operating environment where normally only dry non-conductive pollution occurs. Conductivity caused by temporary condensation should be expected.
- Protection Class 1 refers to grounded equipment, in which protection against electric shock is achieved by Basic Insulation and by means of a connection to the protective ground conductor in the building wiring.

Cooling

The instrument relies on forced air cooling with internal fans and ventilation openings. Care must be taken to avoid restricting the airflow around the apertures (fan holes) on any side of the oscilloscope. For sides and rear apertures, ensure adequate ventilation by leaving the required 10 cm (4 inch) minimum gap around the sides and rear of the instrument. For bottom apertures, the oscilloscope feet (up or down) provide adequate clearance. Ensure at least the minimum feet clearance is achieved as paper or light objects can be drawn to and obstruct the opening(s).

Do not block oscilloscope ventilation holes. For models with bottom apertures, always keep items like sheets of paper clear of the oscilloscope bottom.

The instrument also has internal fan control circuitry that regulates the fan speed based on the ambient temperature. This is performed automatically after start-up with no manual intervention required.

Do not allow any foreign matter to enter the oscilloscope through the ventilation holes, etc.

AC Power Source

100 to 240 VAC (+/-10%) at 45-66 ; 100-120 VAC at 380-420 Hz; Automatic AC voltage selection; Installation Category: 300V CAT II No manual voltage selection is required because the instrument automatically adapts to line voltage.

Power Consumption

Power Consumption (Nominal): 400 Watts (400 VA) Max Power Consumption (with all PC peripherals, active probes connected to 4 channels, and MSO active): 500 Watts (500 VA) Power consumption (in Standby Mode): 15 Watts

Power and Ground Connections

The instrument is provided with a 10A/250V 18AWG rated grounded cord set containing a molded three-terminal polarized plug and a standard IEC320 (Type C13) connector for making line voltage and safety ground connections. The AC inlet ground terminal is connected directly to the frame of the instrument. For adequate protection against electrical shock hazard, the power cord plug must be inserted into a mating AC outlet containing a safety ground contact. Ensure that the disconnect device is readily accessible.

WARNING - Electrical Shock Hazard

Only use the power cord provided with your instrument.

Any interruption of the protective conductor inside or outside of the oscilloscope, or disconnection of the safety ground terminal creates a hazardous situation. Intentional interruption is prohibited.

In Standby mode, the oscilloscope is still connected to the AC supply. The instrument can only be placed in a complete Power Off state by flipping the main power switch on the rear of the instrument (if provided) to the off (Zero) position or by removing the power cord. In cases where no main power switch is provided, removing the main power cord is the disconnect device.

Always use the **Power Switch** or **File** \rightarrow **Shutdown** command in the software to properly shut down your instrument.

Never substitute this practice by pulling the instrument power cord from the socket or shutting down a connected power strip.

The outer conductors of the front panel BNC or ProBus terminals for all input channels are connected to the instrument's chassis and therefore to the safety ground.

Standby (Power) Switch and Oscilloscope Operational States

On some models, the Standby (Power) switch controls the operational state of the oscilloscope. This toggle switch is activated by momentarily pressing and releasing it.

Also on certain models, the color of the LED below the switch indicates the status of the oscilloscope as follows:

- **On (LED Green)*** oscilloscope is fully powered and operational
- Standby (LED off)* oscilloscope is powered off (except for some housekeeping circuits)
- Standby (LED Blinks Green) oscilloscope's computer subsystems (hard drive, etc.) are in Standby (reduced Power mode). All other oscilloscope subsystems are fully powered.
- * Factory Settings

The oscilloscope's factory settings result in only two basic oscilloscope states: On or Standby. In the case of Standby, the oscilloscope is powered off with the exception of some housekeeping circuitry. The oscilloscope can only be placed in a complete power off state by flipping its main power switch to the Off (zero) position, or by unplugging the instrument's power cord from the primary power source (AC outlet). It is recommended that the power cord be unplugged from the AC outlet if the oscilloscope is not being used for an extended period of time.

Changes can be made to the oscilloscope's original factory settings via the **Power Options Properties** menu in Windows under **Control Panel** → **Power Options**. A Windows Power Option named **Standby** provided control of only the oscilloscope's computer subsystems (CPU, hard drive, etc.) and did not affect the other subsystems within the oscilloscope. In general, these other subsystems remain fully powered. For additional information on setting these Power Options, see the Windows Help menu or other related technical documentation. In terms of control buttons, this oscilloscope uses only a power button/switch and therefore references to a sleep button are not applicable.

The oscilloscope can always be placed in the Standby state (LED Off) – Power Off (except for some housekeeping circuits) by pressing and holding in the Standby toggle switch for approximately 5 seconds.

Hibernate mode is not supported by the Power button. Therefore, Windows[®] **Power Options** must not be changed from the default **Never** setting to **System Standby** or **System Hibernate** modes.

Always use the **Power Switch** or **File** \rightarrow **Shutdown** command in the software to properly shut down your instrument. Never substitute this practice by pulling the instrument power cord from the socket or shutting down a connected power strip.

Calibration

The recommended calibration interval is one year. Calibration should be performed by qualified personnel only.

Cleaning

Clean only the exterior of the instrument, using a damp, soft cloth. Do not use chemicals or abrasive elements. Under no circumstances allow moisture to penetrate the instrument. Avoid electrical shock hazard by unplugging the power cord from the AC outlet before cleaning.

- No operator serviceable parts inside.
- Do not remove covers.
- Refer servicing to qualified personnel.

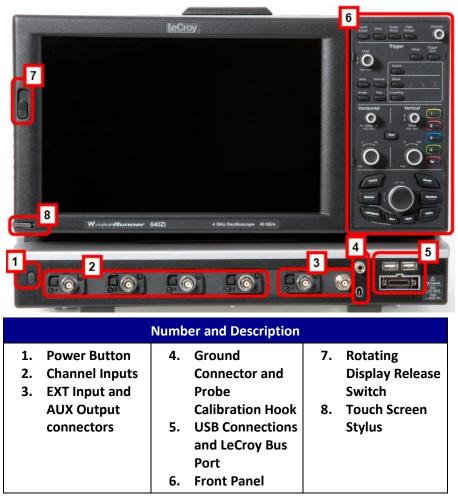
Abnormal Conditions

Operate the instrument only as intended by the manufacturer.

If you suspect the oscilloscope's protection has been impaired, disconnect the power cord and secure the instrument against any unintended operation.

The oscilloscope's protection is likely to be impaired if, for example, the instrument shows visible damage or has been subjected to severe transport stresses.

Proper use of the instrument depends on careful reading of all instructions and labels.



Any use of the oscilloscope in a manner not specified by the manufacturer may impair the instrument's safety protection.

Hardware

Front Panel

Numbered labels on this image correspond with descriptions on the following table.

Rotating and Tilting the Display

The display panel allows for **Rotation** and **Tilting** adjustments. These adjustments allow you to position your instrument with unmatched versatility.

Rotate and Tilt your display using the following instructions:

Note: Your oscilloscope should always be firmly planted on a solid supporting surface at all times.

ROTATING THE DISPLAY

Rotate the display by firmly grasping the left side of the display. Use your thumb to push upward on the release switch (on the front-left side of the display), and then use your wrist to forcibly rotate the display in an upward, clockwise twisting motion until the display locks into portrait position.

Rotating the display from landscape (horizontal) to portrait (vertical) positioning.

The user interface then adjusts its layout from landscape (horizontal) to portrait (vertical). This setup is ideal for viewing high-amplitude signals.

The Rotating Display shown in portrait layout position.

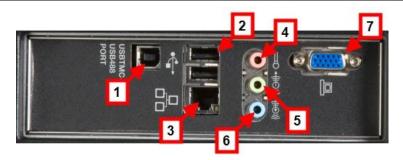
Reverse the process by grasping the now upper side of the display. Again, use your thumb to push upward on the release switch; but, now use your wrist to forcibly rotate the display in a downward, counter-clockwise twisting motion until the display locks back into landscape position.

The user interface then adjusts the layout back from portrait (vertical) to landscape (horizontal).

TILTING THE DISPLAY

The display can be tilted (while in either Landscape or Portrait mode) into Upward or Downward positioning for convenience.

Tilt the display by firmly grasping the far left side of the display and the far right side of the front panel. Use your wrists to forcibly tilt the display by pushing the upper-portions forward (to tilt upward) or the lower-portions backward (to tilt downward) until the desired positioning is reached.


Tilting the display by pushing the upper-portions of the display/front panel forward - tilting the display from downward to upward positioning.

I/O Panel

The I/O Panel is located on the right side (facing) of the instrument as follows:

Note: A LeCroy Bus (LBUS) connection is located on the **Front Panel** (on page 13).

Numbered labels on the following **I/O Panel** image correspond with descriptions on the following table.

Number and Description					
1.	USB488	4.	Microphone	6.	Line In
	Connection		Connection		Connection
2.	USB A	5.	Speaker	7.	External VGA
	Connections		Connection		Monitor
3.	Ethernet Port				Connection

Note: Contact a system administrator when connecting to any internal LAN.

Back Panel

The AC Power Plug is located on the back panel of your instrument.

Note: The WaveRunner 6 Zi has a removable hard drive option. Contact your LeCroy representative for details using **Contact LeCroy for Support** (on page 188).

Basic Controls

Hardware and Software Controls

The following Basic Control topics cover the general usage of the **hardware** buttons located on the oscilloscope's front panel and the screen control interface elements of the **software**.

Front Panel Controls

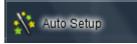
Note: Many front panel controls directly correspond with screen layout controls. For example, the **Print** front panel general control button corresponds with the **Hardcopy** function at **Utilities** → **Utilities** Setup → Hardcopy.

The following picture shows the front panel.

Front Panel Groupings

The front panel is divided into sections based on various functions. The following topics explain these sections in more detail.

Miscellaneous Setup Controls and WaveStream Indicator


This topmost section of the front panel provides the following functions:

- **Touch Screen** By default this button's blue backlit LED is ON and the touch screen is enabled. By pressing this button and turning off the LED, the touch screen is then disabled.
- **Print** Press this button and it automatically executes the based on the settings you've made as described in **Printing and Hardcopy Functions** (on page 161).

You can set the oscilloscope to automatically spool directly to a **printer**, to a **file**, an **email** (with attachment), or to the **clipboard**.

 Scope Setup - Press once and the Scope Setup flyout menu is shown. The Scope Setup flyout menu quickly provides access to Auto Setup, C1 Find Scale, C2 Find Scale, C3 Find Scale, C4 Find Scale, and Default Setup buttons. These functions perform various automatic setup configurations to your instrument. This corresponds to the Auto Setup... selection on the menu bar from the Vertical, Timebase, or Trigger menus.

Press the **Auto Setup...** button on the flyout menu to perform a full auto setup. Press a **Channel Find Scale** button on the flyout menu to perform a quick auto setup for that channel only. Press the **AUTO SETUP...** front panel button twice to perform the last selection from the **Auto Setup...** flyout menu (the default is to perform a full auto setup).

If Auto Setup is run when no channels are turned on, all channels are affected. When more than one channel is turned on, the first channel with a signal applied to it is automatically set up for edge triggering.

Perform an autosetup of all these functions together by pressing the **Auto Setup...** front panel button.

- Clear Sweeps Press to clear data from multiple sweeps (acquisitions) including: persistence trace displays, averaged traces, parameter statistics, and Histicons. During waveform readout, cancels readout. This is the same as pressing Clear Sweeps on the Measure → Measure Setup... or Math → Math Setup dialogs.
- WaveStream Indicates when WaveStream mode is ON. Refer to WaveStream Mode (on page 96) for more information.
- Intensity Press to toggle between WaveStream OFF and ON for Analog Persistence and WaveStream ON for Color Persistence. When you turn the knob, if WaveStream is ON, the WaveStream display intensity changes. When you turn the knob, if WaveStream is OFF, changes the Intensity setting. Corresponds with the screen menu selection: Display → Display Setup (on page 89).

Trigger Front Panel Controls

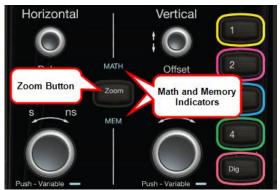
• Level - Press to toggle between 50% trigger level and the previous level setting. Turn to change the trigger threshold level. This level is indicated on the Trigger label.

- **READY and TRIG'D Indicators** The READY indicator is lit when the trigger is armed. TRIG'D is lit momentarily when a trigger occurs. A fast trigger rate causes the light to stay lit continuously.
- Setup Press once to open the Trigger Setup... dialog. Corresponds with screen menu selection: Trigger → Trigger Setup.... Press the Trigger SETUP front panel button again to close the Trigger Setup... dialog.
- **Trigger Scan** Pressing the Trigger Scan button opens the TriggerScan dialog to help you quickly find rare waveform glitches and anomalies.
- **Source** This button directly selects through the available **Source** field values (C1, C2, C3, C4, Dig, EXT, and Line) usually accessed on the **Setup** section of the main **Trigger** dialog.
- Slope This button directly selects through the available Slope field values (Positive, Negative, or Either) usually accessed on the Setup section of the main Trigger dialog.
- Coupling This button directly selects through the available Coupling field values - DC, AC, LFR (Low-Frequency Rejection), or HFR (High-Frequency Rejection) - usually accessed on the Setup section of the main Trigger dialog.
- Auto Press to turn on Auto Trigger mode, which triggers the oscilloscope after a time-out, even if the trigger conditions are not met.
- Normal Press to turn on Normal Trigger mode, which triggers the oscilloscope each time a signal is present that meets the conditions set for the type of trigger selected.
- Single Press to turn on Single Trigger mode, which arms the oscilloscope to trigger once (single-shot acquisition) when the input signal meets the trigger conditions set for the type of trigger selected. If the scope is already armed, it will force a trigger.
- Stop Press to prevent the scope from triggering on a signal. If you boot up the instrument with the trigger in Stop mode, a no trace available message is shown. Press the Trigger AUTO front panel button to display your trace.

Horizontal Front Panel Controls

Note: Horizontal front panel controls can be applied to signals, Math, Zoom, or Memory traces. See Math, Zoom, and Memory Indicators and Controls (on page 24) for more information.

- Delay Press to toggle between a zero horizontal delay value and the previous horizontal delay value. Turn to change the horizontal delay value.
- **Time/Div** Turn to set the time/division of the oscilloscope timebase (acquisition system). When using this Horizontal control on a Math, Zoom, or Memory trace, you can press this button to toggle between fixed and variable adjustments. Turn the knob to change the value.

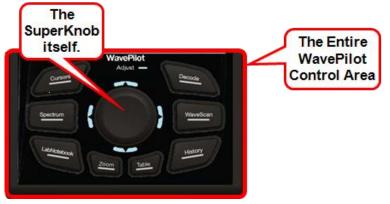

Vertical Front Panel Controls

Note: Vertical front panel controls can be applied to signals, Math, Zoom, or Memory traces. See Math, Zoom, and Memory Indicators and Controls (on page 24) for more information.

- **Channels** The channel buttons (1 4 and Digital) control both channel ON/OFF and which channel is active for the Vertical Offset and Volts/Div knobs controls. If a channel is OFF, pressing that channel button turns it on and makes it active. If a channel button is ON, pressing that channel button makes it active, and then pressing it a second time turns it OFF.
- **Offset** Press to toggle between a zero vertical offset value and the previous vertical offset value for the selected channel. Turn to change the vertical offset value for the selected channel.
- **Gain** Press to toggle between fixed and variable gain adjustment. Turn to change the gain value.

Math, Zoom, and Memory Indicators and Controls

- When pressed, the Zoom automatically creates a Zoom trace of all active channels. Math and Memory traces must first be enabled on their respective dialogs in Math → Math | Memory Setup... for use by the front panel controls.
- When Math, Zoom, or Memory traces are enabled see Math → Math | Zoom | Memory Setup..., respectively - the corresponding indicator light illuminates and the Horizontal and Vertical controls specifically control the Math, Zoom, or Memory trace.
- The Push Variable function on the Time/Div front panel control for Horizontal only applies to Math, Zoom, or Memory traces and not Channels. Press the button to toggle between fixed and variable adjustments or turn the knob to change the value.


The WavePilot Control Area and The SuperKnob

THE WAVEPILOT CONTROL AREA AND THE SUPERKNOB OVERVIEW

The **WavePilot Control Area** contains buttons that correspond to specific functions.

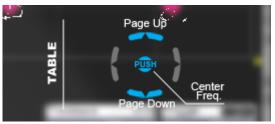
These function buttons are used together with the **SuperKnob** to provide increased instrument control at your fingertips.

The SuperKnob is a joystick-like knob in the center of the WavePilot Control Area used to make selections or provide specific values.

The SuperKnob shown on the WavePilot Control Area.

SuperKnob Field Control and the Adjust Help Flyout Menu

Whenever you access a non-text entry or file browsing control on a dialog, the Adjust Help Flyout menu is shown.


The Probe Attenuation control value being changed using the SuperKnob.

Control values can be adjusted using the touch screen, a connected mouse, or by use of the SuperKnob. Turning the SuperKnob moves through available control values and, as indicated by the Help Flyout menu, pressing the SuperKnob provides Toggle Variable functionality; meaning, fine and coarse adjustments (if available for the particular control) may be selected for use.

The WavePilot Control Area provides powerful control of **Cursors**, **Decode**, **WaveScan**, **History**, **LabNotebook**, and **Spectrum** by their respective function buttons on the front panel. Based on the function button selected, additional functions are then available on the SuperKnob.

PLEASE NOTE THE FOLLOWING:

- Not all functions have a function assigned to each (or any) left, right, up, or down SuperKnob control. Some only have one or two controls. Deactivated SuperKnob control directions are shown as un-labeled and grayed-out on respective Help Flyout menus.
- The name of the current mode being used is shown vertically on the left side of the Help Flyout menu.
- When a function button is pressed and the SuperKnob control changes, a corresponding clearly-labeled, **Help Flyout** menu indicates additional functions available when using the SuperKnob to joystick in **left**, **right**, **up**, or **down** directions.

The Table Mode Help Flyout menu for the Spectrum Function button.

• Some models have **Table** and **Zoom** LED indicators along with **Adjust**. Others have only an **Adjust** LED with **Zoom** and **Table** buttons containing backlit LEDs.

ZOOM AND TABLE BUTTONS

The Zoom and Table buttons may (or may not) provide additional control for a specific WavePilot funciton you have selected.

Zoom Button

With the Zoom button selected (for a function that has the Zoom control) you can twist the SuperKnob dial to **adjust the zoom value for your displayed waveform**.

Table Button

With the Table control selected (for a function that has the Table control) you can joystick up or down to **Page Up** or **Down** through the table results. You can also twist the SuperKnob dial to **sequentially navigate each row of the table results**.

The remaining topics in this section provide more detail when operating specific function buttons on the WavePilot Control Area and when using the SuperKnob.

CURSORS

Use the SuperKnob to adjust Cursors by pressing the **Cursors** function button. Once pressed, the Cursors Help Flyout menu is shown.

Note: For more information about the use of Cursors, see **Measuring** with **Cursors** (on page 102).

Horizontal, Off, and Vertical

Pressing the Cursor Function button moves through states for **Horizontal Absolute**, **Horizontal Relative**, **Vertical Absolute**, **Vertical Relative**, and **Off**.

LED's surrounding the SuperKnob provide visual indication of cursor status as follows:

• When **opposing LED's (Top/Bottom and Left/Right) are lit**, the cursors are in a **Relative** state.

• When **no LED's surrounding the SuperKnob are lit**, the cursors are in an **Absolute** or **Off** state.

Using the SuperKnob with Cursors

The SuperKnob joystick is used for cursor control while in Horizontal and Vertical states in the following manner:

- Horizontal Cursors Help Flyout menu is shown with instructions for left and right joystick use of the SuperKnob described as Leftmost and Rightmost. When either is selected, you can twist the SuperKnob to adjust the respective cursor.
- Vertical Cursors Help Flyout menu is shown with instructions for left and right joystick use of the SuperKnob described as **Topmost** and **Bottommost**. When either is selected, you can twist the SuperKnob to adjust the respective cursor.
- **Pushing the SuperKnob button** changes the cursor control from the two available states with the added state of tracking (moving the pair together in parallel).
- You can force cursors to swap identities in the event where one is adjusted past the level of its other extreme. Meaning, if you were to adjust a bottommost cursor above its respective topmost cursor, the bottommost would then become the topmost and vice versa.

Note: Zoom and Table buttons are not used for Cursors.

DECODE

When first pressing the **Decode** function button, the Serial Decode dialog is shown. Subsequent presses of the Decode function button produce the following results:

- If you **haven't** enabled a Decode signal, it **Closes** the Serial Decode dialog.
- If you **have** enabled a Decode signal, it **Closes** the Serial Decode dialog and **disables** the Decode signal.
- If you **have** enabled a Decode signal, and the Serial Decode dialog is closed or a different dialog is currently opened (say, the Zoom dialog), the Serial Decode dialog is **Opened**.

Zoom and Table Buttons for Decode

The Zoom and Table buttons are used as described in **The WavePilot Control Area and The SuperKnob Overview** (on page 25). Decode tables are shown beneath the main display area.

WAVESCAN

When first pressing the **WaveScan** function button, the **WaveScan** dialog is shown with table data showing in a column to the left of the main display area. Subsequent presses of the **WaveScan** function button produce the following results:

- WaveScan is turned **On** and you click Close on the WaveScan dialog or open a different dialog (say, the Zoom dialog), and then click the WaveScan function button, the WaveScan dialog is **Opened**.
- WaveScan is turned **Off** and the WaveScan dialog is **Closed**.

Zoom and Table Buttons for WaveScan

The Zoom and Table buttons are used as described in **The WavePilot Control Area and The SuperKnob Overview** (on page 25).

HISTORY

When first pressing the **History** function button, the **History** dialog is shown with table data showing in a column to the left of the main display area. Subsequent presses of the **History** function button produce the following results:

- History is turned **On** and you click Close on the History dialog or open a different dialog (say, the Zoom dialog), and then click the History function button, the History dialog is **Opened**.
- History is turned **Off** and the History dialog is **Closed**.

On the History dialog, a **Capacity** control is provided.

Note: A default value for the **Capacity** control is generated based on your instrument's specific Acquisition Memory Setting (it also varies based on specific setups, configurations, and settings at any given time).

Zoom and Table Buttons for History

The Zoom and Table buttons are used as described in **The WavePilot Control Area and The SuperKnob Overview** (on page 25).

LАВ**N**ОТЕВООК

When first pressing the **LabNotebook** function button, the LabNotebook dialog is shown. The button toggles between opening and closing the LabNotebook dialog - unless you already have LabNotebook entries stored. With LabNotebook entries already stored subsequent presses of the LabNotebook function button:

- opens the LabNotebook dialog and your first My Notebook Entry is shown on the display area in Preview mode.
- closes the LabNotebook dialog and the My Notebook Entry preview.

Using the SuperKnob with LabNotebook

As mentioned, with LabNotebook entries already stored a subsequent press of the LabNotebook function button shows the preview along with the dialog. You can then turn the SuperKnob to move through entries shown in **My Notebook Entries** on the LabNotebook dialog. Pushing the SuperKnob performs a Flashback (Recall) of the stored entry selected in the My Notebook Entries on the LabNotebook dialog.

Note: Zoom and Table buttons are not used for LabNotebook.

SPECTRUM

When first pressing the **Spectrum** function button, the Spectrum dialog is shown with table data showing in a column to the left of the main display area. Subsequent presses of the **Spectrum** function button produce the following results:

- Spectrum Analysis is turned **Off** and the SpectrumAnalyzer dialog is **Closed**.
- Spectrum Analysis is turned **On** and you click Close on the SpectrumAnalyzer dialog or open a different dialog (say, the Zoom dialog), and then click the Spectrum function button, the SpectrumAnalyzer dialog is **Opened**.

Zoom and Table Buttons for Spectrum

Zoom and Table buttons are used as described in **The WavePilot Control Area and The SuperKnob Overview** (on page 25). In addition, a spectrum-specific **Table** control functionality **Centers the Frequency** of your displayed waveform when the SuperKnob is pressed based on the particular **Frequency** row you have selected from the Spectrum table displayed to the left of the main display area.

The Table Help Flyout menu for the Spectrum Function button.

Probe and Signal Connection Interfaces

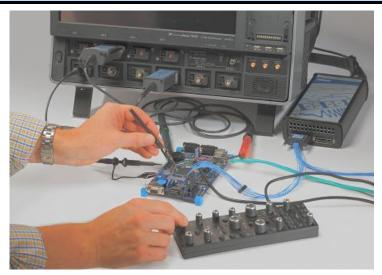
Probe and Signal Connection Interfaces Overview

LeCroy oscilloscopes are equipped with a variety of connection interfaces to allow connection of cables directly to the oscilloscope channels, or to allow probe connections to the oscilloscope. When probes are connected, a probe interface is used to power the probe (as necessary), to recognize the probe type and its characteristics, and to communicate to and from the probe to completely integrate the probe with the oscilloscope channel in a number of ways. For instance, active singleended and differential voltage probes and current probes use these interfaces upload gain and offset correction factors from the probe EEPROM's and, in some cases, automatically compensates responses to achieve fully-calibrated measurements.

Some oscilloscope product series support multiple probe and connection interfaces. This can be an advantage when the highest speed signal on a design requires the use of a high-bandwidth oscilloscope, yet it is also highly desired to view other low-speed signals in conjunction with the highest-speed signals so as to debug or analyze a complicated embedded design. An example would be a high-speed serial data interface, such as PCIe, that may interoperate with low-speed signals, such as I²C or power supply lines. In this case, the multiple connection interfaces in a single high-bandwidth oscilloscope would allow connection of passive voltage probes, current probes, and high-bandwidth differential probes without the use of additional adapters that cost extra money and may be easily lost or misplaced. Multiple probe and connection interfaces also provide users the ability to connect two probes to the circuit on a single channel and switch between them without disconnecting and re-connecting probes from the circuit. This function is remotely programmable allowing the interface to operate like a switch, and the ability to select four out of eight inputs provides unheard of connection flexibility.

Note: AUX INPUT and AUX OUTPUT connections are also typically located on the Front Panel. Refer to the **Auxiliary Output Signals** (on page 169) topic for **Auxiliary Output** dialog details.

Probe Interfaces


Probe Interfaces Overview

LeCroy oscilloscopes utilize one or more proprietary probe interfaces providing a complete measurement solution from probe tip to oscilloscope display. Compared to standard BNC and Probe Ring interfaces, this intelligent interconnection between your instrument and the probe or accessory eliminates the guesswork and errors that occur when probe settings are made manually, and also offers the following important signal fidelity advantages:

- Upon connection to the oscilloscope channel, the probe is recognized and some setup information, such as input coupling and attenuation, is performed automatically.
- System (probe plus oscilloscope) gain settings are automatically calculated and displayed based on the probe attenuation.
- Active probes typically provide automatic matching of probe to oscilloscope response using probe response data stored in an onboard EEPROM. This ensures the best possible combined probe plus oscilloscope channel frequency response without requiring the user to perform any de-embedding procedure.

Probe interfaces differ in bandwidth, so the interfaces contained on your oscilloscope depend on the bandwidth rating of the oscilloscope model you purchased.

Note: The lowest bandwidth oscilloscopes contain only a BNC and perhaps a Probe Ring interface; whereas, the highest bandwidth oscilloscopes may contain every type of probe interface LeCroy supports.

A LeCroy Zi series oscilloscope showing the four sets of ProBus/ProLink probe interfaces. Zi oscilloscopes are compatible with all LeCroy probes.

The following figure shows a typical channel setup dialog on a LeCroy oscilloscope containing both ProLink (Input A, Upper) and ProBus (Input B, Lower) interfaces. The input selection is on the left-hand side of the dialog box. In this case the A input, the ProLink interface is selected. When the probe is not connected, there is only a C1 tab selection for vertical channel setup and the user has the ability to select input coupling and probe attenuation.

ci	vailable.	Input Co	oupling		Pro	be Attenuation	0.0 GS/s Cascaded
Trace On	Vertical Scale AScale Vidiv 50,0 mV Var Gan	Offset InputAOffset 0 mV Zero	Coupling 5032 ACoupling DC500	Bandwidth ABandwidth Full	Probe Probe Attenuation	Averaging Averaging 1 sweep Deskew 0 pis	Interpolation Linear Noise Filter (ERes) None
Input B (Lower)	Adions for trace C1	f(x) Math Decode	Store Find Scale	Next Grid	Probe Cal - Cable Deskew	Cable De-Embedding	


The channel dialog layout showing Input A's ProLink interface controls setup before connection.

When a probe is connected, it is recognized and an additional tab with the probe model name is displayed to the right of the C1 tab.

The channel dialog layout showing Input A's ProLink interface controls setup after connection.

This additional tab contains specific information on the connected probe. In addition, default values for the probes coupling and attenuation (which may not be changed) are automatically downloaded from the probe, and these settings along with other attributes are shown on the corresponding probe dialog.

The dialog showing the connected probe's control attributes.

ProBus Probe and Cable Connecting Interface

The ProBus interface contains a 6-pin power and communication connection and a BNC signal connection to the probe. It offers both 50 $\Omega/1$ M Ω input impedance and provides probe power and control for a wide range of probes such as high impedance passive probes, high impedance active probes, current probes, high voltage probes, and differential probes. ProBus also includes sense rings for detecting passive probes. The ProBus interface may also have a BNC-terminated cable connected directly to it. ProBus is based on a BNC connector and, depending on the exact BNC connector used and the oscilloscope design, is rated for up to 4 GHz with 50 Ω coupling or up to 1 GHz for 1 M Ω coupling (depending on the exact model purchase).

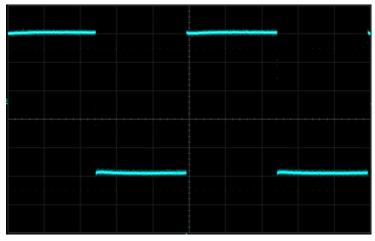
Probes

LeCroy offers a variety of passive and active probes for use with your X-Stream oscilloscope. Visit <u>www.lecroy.com</u> for specifications and ordering information.

- **Current Probes** Current Probes measure the current passing through a wire; current probes do not use the traditional probing style of placing a tip onto a test point. Instead, a wire is placed inside the jaw of the probe, which allows the probe to measure the current (in Amps).
- Active Probes There are two different types of active probes: single-ended and differential.

Single-Ended - A single-ended active probe is associated with measuring voltages at high frequencies. Measurement with an active probe requires a test point and a ground point. The ground (also called earth) acts as a zero reference for the test point measurement.

Differential Probes - Differential active probes are like two probes in one. Instead of measuring a test point in relation to a ground point (like single-ended active probes), differential probes measure the difference in voltage of a test point in relation to another test point.


• **Passive Probes** - Passive probes measure voltages at lower frequencies (<500 MHz). They have higher input capacitance (input C) and do not need power to operate (unlike active probes). At higher frequencies, higher input capacitance loads the test circuit, attenuating the signal. This is why active probes are used in high frequency applications. Passive probes also measure voltage in reference to ground.

• **High Voltage Probes** - These are active, single-ended probes designed to safely measure high voltages. They measure the voltage in reference to ground.

Passive Probe Compensation

Passive probes must be compensated to flatten overshoot. This is accomplished by means of a trimmer at the connector end of the probe.

- 1. Attach the connector end of your passive probe to any channel.
- 2. Connect the probe end to the CAL output connector at the front of the oscilloscope. Ground the probe.
- 3. Adjust the trim pot at the connector end of the probe until the square wave is as flat as possible.

Display Dashboard

Display Dashboard Overview

This section covers the various aspects of the user interface shown in the display of your instrument.

Screen Layout, Groupings, and Controls

The instrument's screen is divided into the following main sections:

- Menu Bar
- Signal Display Grid
- Descriptor Labels
- Dialog(s)
- The Message Bar

Note: Many front panel controls directly correspond with screen layout controls. For example, the **Print** front panel general control button corresponds with the **Hardcopy** function set from **Utilities** → **Utilities Setup** → **Hardcopy**.

Menu Bar

The top of the screen contains a menu bar of commonly used functions. Whenever you touch one of these buttons and make a selection from its drop-down menu, the dialog area at the bottom of the screen displays the corresponding dialog.

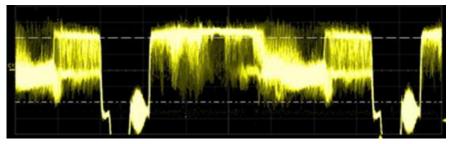
Specific Menu Bar functions are referenced using arrow-separated path descriptions. For example, the **Save Setup** function is referenced as **File** → **Save Setup...**.

PLEASE NOTE THE FOLLOWING:

For common oscilloscope operations, you don't need to use the top menu bar (since you can access most dialogs from the Front Panel or from the Descriptor Labels). However, it is the only way to access setup or other dialogs for Display Setup, Save or Recall Waveform, Save or Recall Setups, Print Setup, Vertical (Channel), Horizontal, or Trigger Status, Memory (Reference Waveform) Setup, Pass/Fail Setup, or Utilities and Preferences Setup....

The Quick Access Toolbar

The Quick Access portion of the toolbar is located on the right side of the menu bar. It contains the Rotate Display button.



When the display is rotated, touch this button to adjust the user interface to a portrait layout. The button toggles from portrait layout back to landscape.

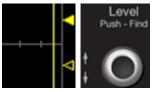
For additional information on rotating and tilting the display, refer to **Hardware and Software Controls** (on page 19).

The Signal Display Grid

The grid area is divided into 8 vertical divisions and 10 horizontal divisions just like any other oscilloscope. Set up the signal display area by touching **Display** \rightarrow **Display Setup...** from the menu bar. The **Display** dialog offers a choice of grid combinations and can also set the grid intensity.

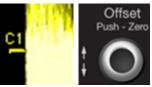
There are several indicators on the grid to help you understand the following:

• **Trigger Delay** - This indicator is located along the bottom edge of the grid. Trigger delay allows you to see the signal prior to the trigger time.


All trigger delay values (including post-trigger delay, shown here) are displayed in the Timebase Descriptor Label. Zero delay is the horizontal center of the oscilloscope display.

The default setting (Time) is for delay readout (in seconds) and to move proportionately when the timebase knob is turned. If you want to set delay (Div) to a fixed position on the grid, and then have it stay fixed as the timebase changes, go to **Utilities** \rightarrow **Preference Setup...** and select the **Acquisition** dialog to make the setting.

• **Post-trigger Delay** - This is indicated by a left-pointing arrow to the lower-left of the grid. Pre-trigger delay is indicated by a right-pointing arrow to the lower-right of the grid.



• **Trigger Level** - This indicator is located at the right edge of the grid. It tracks the trigger level as you reposition the trace up or down, or change scale. When triggering is stopped, a hollow arrow indicates where the new level ends up when triggering resumes.

Push the LEVEL knob to reset the level to 50%.

• Zero Volts Level - This indicator is located at the left edge of the grid. Change the zero volts level by turning the vertical OFFSET knob. Push the knob to reset the indicator to the middle of the grid.

Signal Display Grid Pop-Up Menu

On the Signal Display Grid, the Pop-up menu provides assistance while using the oscilloscope.

Clicking on a waveform opens a pop-up menu. From this pop-up menu, you can perform the following functions:

- Open the Setup dialog for the trace
- Turn the trace descriptor label off
- Open the Math dialog for the trace
- Open the Measure dialog for the trace
- Annotate the selected trace

Trace Descriptor Labels

Shown just beneath the grid display, these boxes provide a summary of your channel, timebase, and trigger settings.

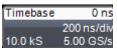
When a trace is selected its corresponding descriptor label is shown highlighted.

The C1 Trace Descriptor Label is selected; C2 is not.

Make vertical or horizontal channel adjustments by touching the respective label. The setup dialog for the function is shown beneath.

Channel trace labels show the vertical settings for the trace and cursor information (if cursors are in use). The title bar of the label includes indicators for (SinX)/X interpolation, waveform inversion (INV), deskew (DSQ), coupling (DC/GND), bandwidth limiting (BWL), and averaging (AVG).

0	
AVG	8
SINX	8
a a a a a a a a a a a a a a a a a a a	0
<mark>ese</mark>	00
•	0
End	C
Bwl	8


These indicators have a long and short form, respectively.

The long and short forms of trace descriptor indicators.

Besides channel traces, math and parameter measurement labels are also displayed. Labels are displayed only for traces that are turned on.

Vertical and horizontal trace descriptor (labels) are displayed below the grid. They provide a summary of your channel, timebase, and trigger settings. Make vertical or horizontal channel adjustments by touching the respective label. The setup dialog for the function is shown beneath.

TimeBase trace descriptor labels show the trigger delay setting, time per division, and sampling information.

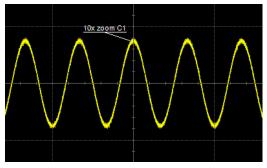
Trigger trace descriptor labels show the trigger mode (Auto, Normal, or Stopped). It also shows the coupling (DC), trigger type (Edge), source (C1), level (0 mV), and slope (Positive).

Trigger	CIDC
Auto	0 mV
Edge	Positive

Setup information for horizontal cursors, including the time between cursors and the frequency, is shown beneath the TimeBase and Trigger trace descriptor labels.

X1= 1.36735 µs	∆X=	531.07 ns
X2= 1.89842 µs	1/∆X= 1	.88299 MHz

Actions for Trace Buttons


You can access the same functions as the ones produced when using the Signal Display Grid Pop-Up menu just by clicking a trace-descriptor label, which shows its corresponding dialog. From the respective dialog, you're able to access the same functions as Actions for Trace X buttons.

- Open the Setup dialog for the trace.
- Open the Math dialog for the trace.
- Open the Measure dialog for the trace.
- Annotate the selected trace.

For more information, see the Actions for Trace Buttons section of **Dialog Area** (on page 46).

Annotating Traces

The instrument gives you the ability to add an identifying label, bearing your own text, to a waveform display:

For each waveform, you can create multiple labels and turn them all on or all off. Also, you can position them on the waveform by dragging or by specifying an exact horizontal position.

Touch the waveform you want to annotate right on the display grid, and then touch **Set label...** on the pop-up menu. A dialog box opens in which to create the label.

If you are creating a label for the first time for this waveform, **Label1** is displayed as default text when the **Add label** button is clicked.

F1: Trace Annotation	×
	her be specified in the control below, el using the touchscreen/mouse.
Labels Label 1	Add label View labels
	Remove label
Label Text 10x zoom C1	Horizontal Pos.
	-223.0115
	Close

From this pop-up you can **edit** existing annotations, change the label **placement** on the waveform, **add** labels, **remove** labels, and **toggle the visibility**. The following bullets show you how.

• If you are modifying an existing label, under **Labels** touch the label you want to change.

Note: If the dialog for the trace you want to annotate is currently displayed, you can touch the label button at the bottom to display the Trace Annotation setup dialog.

Label

You may place a label anywhere you want on the waveform. Labels are numbered sequentially according to the order in which they are added, and not according to their placement on the waveform.

 If you want to change the label's text, touch inside the Label Text field. A pop-up keyboard appears for you to enter your text. Touch O.K. on the keyboard when you are done. The edited text automatically appears in the label on the waveform.

- Precisely place the label by touching inside the **Horizontal Pos.** field and provide a horizontal value, using the pop-up numeric keypad.
- Add another label by touching the **Add label** button. Delete a label by selecting the label from the list, and then touching the **Remove label** button.
- Make labels visible by touching the **View labels** checkbox.

Dialog Area

The lower portion is where information is shown, selections are made, and data is input. Typically they are organized into tabular displays, subtabs, or pop-up dialogs. The dialog area is controlled by **Touch Screen Controls** and **Front Panel Controls** (on page 19).

Touch Screen Controls

Various touch screen user interface controls are provided for easily entering data. Their functionality is described in this topic and you'll see them referenced throughout the documentation.

POP-UP SELECTOR CONTROLS

When Pop-Up selector controls are touched, sometimes a very small box is shown right inside the control - as in the following control for **Coupling** on the C1 dialog.

Pop-Up Selector Control for smaller values.

Other times, a larger box is shown after touching a control.

This larger Pop-Up has categorical buttons along the left column along with labels (and sometimes descriptions) for the selectable entry values.

Pop-Up Selector Control for values with varied types.

TEXT ENTRY CONTROLS

Most controls can be touched once and you can then provide a value using an attached (or double-touch/click to use the Virtual, on-screen) keyboard.

Enter Notebook Info	
Enter Report Title: 1/11/2011 4:33:08 PM Enter Report Description:	
Just type here, or use the Virtual Keyboard $ ightarrow$	Virtual Keyboard
	Description:
Save	~ ! @ # \$ % ` 1 2 3 4
	Tab -> q w e r
^	Caps Lock a s d f

Text entry field for LabNotebook using the Virtual Keyboard.

FOLDER/FILE BROWSING CONTROLS

These controls allow for navigation to or from folders (on the hard drive or memory device) for retrieving or storing items such as waveforms, LabNotebook entries, to name a few.

Folder/File Browsing recall waveform controls.

Note: The instrument's hard disk is partitioned into drive **C**: and drive **D**:. Drive C: contains the Windows operating system and the instrument application software. Drive D: is intended for data files.

FLYOUT MENU CONTROLS

Flyout Menus provides a variety of solutions for a particular main area of functionality. It does this by providing a set of buttons subdividing the control into more specific functions on the right-side of the display.

An example of Flyout Menu Controls is seen in the **Setup** front panel button.

Setup Flyout Menu control.

PRECISION DATA ENTRY CONTROLS

Certain fields requiring precise value entry assist you by having precision entry means. When these controls are selected, you can provide values as follows:

Keyboard

Touch inside a text entry control and you can manually type the value in using an attached (or double-touch/click to use the Virtual, on-screen) keyboard.

Text entry field for LabNotebook using the Virtual Keyboard.

Slider Bar

Some models provide what is known as a **Slider Bar** along the bottom of the screen **when a keyboard is attached** to the instrument. The Slider Bar allows you to select your entered value by moving a horizontal slider (left to right provides low to high amounts).

The Slider Bar

Pop-Up Keypad

Some models provide a pop-up Keypad when you touch twice in the same control. A keypad button is also provided on the slider bar (on models that have the slider bar) which shows the pop-up keypad when touched.

For many controls, once the Pop-Up Keypad is shown the **Front Panel Controls** (on page 19) can be used to adjust the value in the pop-up. The Pop-Up contains **Up** and **Down** arrow buttons, **Set to Max**, **Default**, and **Min** buttons, and the **Keypad** itself for providing your value.

The slider bar also has a handy default value button for quickly entering the default for the control.

Default and Keypad Buttons on the Slider Bar (only shown on 7 and 8 Zi models with a keyboard attached.

The WaveRunner 6 Zi provides touch-screen interface control in a different manner. See **The WavePilot Control Area and The SuperKnob Overview** (on page 25) for more information.

Actions for Trace Buttons

Several dialogs contain common functions accessible from a row of buttons that can save you a step or two when using a particular function (instead of accessing the respective location from the menu bar or the Signal Display Grid Pop-Up Menu).

For example, at the bottom of the Channel Setup dialog, these buttons (sometimes labeled as **Actions**) perform the following functions:

- **Measure** Opens the Measure menu. You can then select a parameter from this menu without leaving the Channel Setup dialog. The parameter automatically appears below the grid.
- **Zoom** Creates a zoom trace of the channel trace whose dialog is currently displayed.
- Math Opens the Math menu. You can then select a math function from this menu without leaving the Channel Setup dialog. A math trace of the channel whose dialog is currently open is automatically displayed.
- **Decode** Opens the main Serial Decode dialog where protocol option measurements can be applied to signals.
- **Store** Loads the channel trace into the next available memory location (M1 to M4).
- Find Scale Automatically performs a vertical scaling that fits the waveform into the grid.
- Next Grid Automatically moves the channel trace whose dialog is currently open onto the next grid. If you have only one grid displayed, a new grid will be created automatically, and the trace moved.
- Label Enables you to attach identifying labels to your waveforms. The labels are preserved when the waveform is saved as a LabNotebook entry and when saved to file.
- **Probe Cal Cable Deskew** Opens the Probes Cal. dialog where various Gain, Offset, Skew, Source, and Advanced controls are available for probe signal calibration.

Another example is seen in the buttons appearing at the bottom of the Measure **Px** dialogs. The button may be selected in order to display the functions named on the buttons (sometimes labeled as **Actions**):

Actions for Trace buttons on the Cx dialog.

Using these buttons allow you to remain in the Measure dialog while setting up a Math trace on a parameter measurement.

Message Bar

At the bottom of the oscilloscope display is a narrow message bar. The current date and time are displayed at the far right. Status, error, or other messages are also shown in this area.

Turning on Channels and Traces

Note: If you want to display each trace on its own grid automatically, enable Autogrid by touching **Display** \rightarrow **Autogrid** from the menu bar.

- On the front panel, press a channel select button to display the trace label for that input channel and turn on the channel.
- Turn on a math function trace by touching Math → Math Setup... from the menu bar. Touch the corresponding On checkbox to activate the desired trace.
- You can also quickly create traces (and turn on the trace label) for math functions and memory traces, without leaving the Vertical Adjust dialog, by touching the icons at the bottom of the Vertical Adjust dialog.

Whenever you turn on a channel, math, or memory trace using either the **menu bar** or **trace descriptor label**, the dialog at the bottom of the screen automatically switches to the vertical setup or math setup dialog for that selection.

You can configure your traces from here, including math setups.

The Trace Dialog is shown on the lower (dialog) portion of the screen. The tab is labeled with the corresponding channel number as follows:

Timebase

Timebase Overview

You can access Timebase settings using the front panel **Horizontal** controls, the **Timebase** \rightarrow **Horizontal Setup...** on the menu bar, or by touching the Timebase trace descriptor label. The Timebase dialog is then shown.

Timebase Setup and Control

- 1. With the Timebase dialog showing, touch inside the **Time/Division** data entry control and provide a value using your preferred input control method for more information regarding the touch screen controls, refer to **Dialog Area** (on page 46).
- 2. Touch inside the **Delay** data entry control and provide a value.

Sampling Modes

Sampling Modes Overview

Depending on your timebase, you can choose **Single-shot Sampling Mode** (below), also known as Real Time mode, **Sequence Sampling Mode** (on page 56), or **RIS Sampling Mode** (on page 63) mode sampling.

Some instruments also offer Roll Mode (on page 64).

Selecting a Sampling Mode

- 1. Touch **Timebase → Horizontal Setup...** from the menu bar.
- 2. In the Timebase dialog, touch a Sample Mode button.
- If you chose Sequence Mode, touch the Sequence tab. The Sequence dialog is shown. Use the following controls to provide details for controls such as Number of Segments, Enable Timeout, Timeout (value), Display Mode, and Show Sequence Trigger Times.

Single-shot Sampling Mode

Basic Capture Technique

A single-shot acquisition is a series of digitized voltage values sampled on the input signal at a uniform rate. It is also a series of measured data values associated with a single trigger event. The acquisition is typically stopped a defined number of samples after this event occurs: a number determined by the selected trigger delay and measured by the timebase. The waveform's horizontal position (and waveform display in general) is determined using the trigger event as the definition of time zero.

You can choose either a pre- or post-trigger delay. Pre-trigger delay is the time from the left-hand edge of the display grid forward to the trigger event, while post-trigger delay is the time back to the event. You can sample the waveform in a range starting well before the trigger event up to the moment the event occurs.

Getting Started Manual

This is 100% pre-trigger, and it allows you to see the waveform leading up to the point at which the trigger condition was met and the trigger occurred. (The instrument offers up to the maximum record length of points of pre-trigger information.) Post-trigger delay, on the other hand, allows you to sample the waveform starting at the equivalent of 10,000 divisions after the event occurred.

On fast timebase settings, the maximum single-shot sampling rate is used. But for slower timebases, the sampling rate is decreased and the number of data samples maintained.

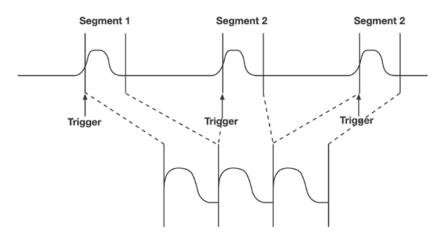
The relationship between sample rate, memory, and time can be simply defined as:

Capture Interval = 1/Sample Rate X Memory

and

Capture Interval/10 = Time Per Division

Sequence Sampling Mode – Working with Segments

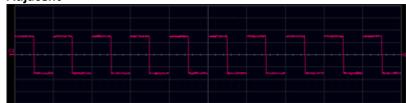

Using Sequence Mode, thousands of trigger events can be stored as segments into the oscilloscope's memory (the exact number depends on oscilloscope model and memory options). This is ideal when capturing many fast pulses in quick succession or when capturing few events separated by long time periods. The instrument can capture complicated sequences of events over large time intervals in fine detail, while ignoring the uninteresting periods between the events. You can also make time measurements between events on selected segments using the full precision of the acquisition timebase.

Sequence mode offers a number of unique capabilities:

- You can acquire up to four channels simultaneously.
- You can minimize dead time between trigger events for consecutive segments.
- You can view time stamps for acquisitions.
- You can zoom segments or used them as input to math functions.

- You can combine sequence mode with an advanced trigger to isolate a rare event, capture all instances over hours or days, and view/analyze each afterwards.
- You can use Sequence mode in remote operation to take full advantage of the instrument's high data-transfer capability.

In Sequence mode, the complete waveform consists of a number of fixed-size segments acquired in single-shot mode (see the instrument specifications for the limits). The oscilloscope uses the sequence timebase setting to determine the capture duration of each segment as 10 x time/div. With this setting, the oscilloscope uses the desired number of segments, maximum segment length, and total available memory to determine the actual number of samples or segments, and time or points.



How the instrument captures segments

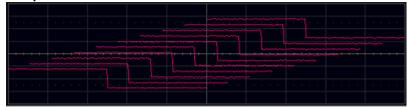
Sequence Display Modes

The instrument gives you a choice of five ways to display your segments:

• Adjacent

• Waterfall (cascaded)

		تحصيرا تصبي المحدر أتصبي أتصبي
		enter Sector Sector Sector Status
	C+n-data	Contract of the second s
- 100 - 12 (S. 2017) 13		


• Mosaic (tiled)

A REAL PROPERTY AND A REAL	a the state of the	
the transmerror	·	in numerous second

• Overlay

			Í					Ι											Τ													
		~	-	1		**	•	t	-	-		1			1	-	-	-	1													
2																			ł													
																			ł			_	_								_	_

• Perspective

Note: some display modes have limitations on the number of segments that can be shown at one time.

Sequence Mode Setup

When setting up Sequence Mode, you define the number of fixed-size segments acquired in single-shot mode (see the instrument specifications for the limits). The oscilloscope uses the sequence timebase setting to determine the capture duration of each segment. Along with this setting, the oscilloscope uses the number of segments, maximum segment length, and total available memory to determine the actual number of samples or segments, and time or points.

Setting up Sequence Mode (Adjacent)

1. Touch **Timebase → Horizontal Setup...** on the menu bar.

- 2. Click the Sequence tab.
- 3. Under Acquisition Settings, touch inside the Num Segments data entry control and provide a value using your preferred input control method - for more information regarding the touch screen controls, refer to Dialog Area (on page 46).

Note: The number of segments you choose to display can be less than the total number of segments in the waveform. For example, in the pop-up images above, the number of display segments is 10, but the total number of segments entered in the timebase dialog's **Num Segments** control is 100.

- 4. Touch the **Enable Timeout** checkbox.
- 5. Touch inside the **Timeout** data entry control and provide a timeout value.

Note: Use the sequence mode timeout to automatically interrupt the sequence acquisition if the timeout value is exceeded without a valid trigger. The timeout period accounts for instances when a **Num Segments** miscount occurs for some reason and the oscilloscope waits indefinitely for an unforthcoming segment. During that time, no oscilloscope functions are accessible. By means of a timeout value, however, the acquisition will be completed, the waveform displayed, and control of the oscilloscope returned to the user after the timeout has elapsed.

- 5. Under **Display Settings**, touch inside the **Display mode** control, and select a sequence mode display from the pop-up menu.
- 6. Touch the SINGLE trigger front panel button.

Note: Once a single acquisition has started, you can interrupt the acquisition at any time by pressing the **SINGLE** front panel button a second time or by pressing the **STOP** front panel button. In this case, the segments already acquired will be retained in memory.

Zooming Segments in Sequence Mode

You can zoom individual segments easily using the **QUICKZOOM** front panel button. When you zoom, the zoom traces default to Segment 1. Channel descriptors indicate the total number of segments acquired. Zoom descriptors indicate [Seg #] and #Segments in the Zoom. You can scroll through the segments using **ZOOM** front panel position knob.

Sample Zoom of Segments in Sequence Mode

1. Touch the front panel **Quickzoom** button.

- 2. Turn the **ZOOM** front panel position knob to scroll through the segments.
- 3. To vary the degree of zoom, touch the newly created **Zx** trace label. The setup dialog for the zoom (Z1 to Z4) opens. It shows the current horizontal and vertical zoom factors.

4. If you want to increase or decrease your horizontal or vertical zoom in small increments, touch the Var. checkbox to enable variable zooming. Now with each touch of the zoom control buttons, the degree of magnification changes by small increments.

OR

If you want to zoom in or out in large standard increments with each touch of the zoom control buttons, leave the **Var.** checkbox unchecked.

OR

If you want to set exact horizontal or vertical zoom factors, touch inside the Horizontal **Scale/div** data entry control and enter a time-per-div value, using the pop-up numeric keypad. Then touch inside the Vertical **Scale/div** control and enter a voltage value.

Displaying an Individual Segment

- 1. Touch Math → Math Setup... on the menu bar.
- 2. Touch a function tab **Fx** showing its corresponding dialog.
- On the dialog, touch inside the **Operator1** control and select the Segment button from the pop-up menu.

- 4. In the dialog on the right, touch the **Select** tab.
- 5. Touch inside the **First Selected** data entry control and select the first segment you want to display. Use the same method to provide a value in the **Number of Selected** data entry control.

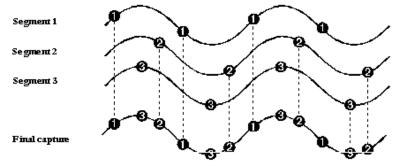
Note: In Persistence mode, the segments are automatically overlaid one on top of the other in the display. In non-Persistence mode, they appear separately on the grid.

Viewing Time Stamps

You can view time stamps for each segment.

View Segment Time Stamps

Touch Timebase → Acquisition Status on the menu bar.
 OR


Touch Vertical → Channel Status on the menu bar.

- 2. Touch the **Trigger Time** tab.
- 3. Under **Show Status For**, touch the **Time** button.
- 4. Touch inside the **Select Segment** control and enter a segment number value (you can also touch the arrow buttons to scroll through segment times).

RIS Sampling Mode - For Higher Sampling Rates

RIS (Random Interleaved Sampling) is an acquisition technique that allows effective sampling rates higher than the maximum single-shot sampling rate. It is used on repetitive waveforms with a stable trigger. The maximum effective RIS sampling rate is achieved by making multiple single-shot acquisitions at maximum real-time sample rate. The bins thus acquired are positioned approximately 5 ps (200 GS/s) apart. The process of acquiring these bins and satisfying the time constraint is a random one. The relative time between ADC sampling instants and the event trigger provides the necessary variation.

The instrument requires multiple triggers to complete an acquisition. The number depends on the sample rate: the higher the sample rate, the more triggers are required. It then interleaves these segments (in the following graphic) to provide a waveform covering a time interval that is a multiple of the maximum single-shot sampling rate. However, the real-time interval over which the instrument collects the waveform data is much longer, and depends on the trigger rate and the amount of interleaving required.

Note: RIS mode is not available when the oscilloscope is operating in **fixed sample** or DBI 25 - 45 GHz) modes as covered in **Smart Memory** (available in the online help files) and **Combining Channels** topics, respectively.

Roll Mode

Roll mode displays, in real time, incoming points in single-shot acquisitions that have a sufficiently low data rate. The oscilloscope rolls the incoming data continuously across the screen until a trigger event is detected and the acquisition is complete. The parameters or math functions connected to each channel are updated every time the roll mode buffer is updated, as if new data is available. This resets statistics on every step of Roll mode that is valid because of new data. **Note**: If the processing time is greater than the acquire time, the data in memory gets overwritten. In this case, the instrument issues a **Channel data is not continuous in ROLL mode!!!** warning and rolling starts over again.

Vertical

Adjusting Sensitivity and Position

You can make adjustments to both the sensitivity ad the positioning of displayed waveforms.

Adjusting Sensitivity

1. Press the appropriate channel push button (channel 1, for example).

OR

Touch Vertical \rightarrow Channel 1 Setup... from the menu bar.

2. Touch inside the **Trace On** checkbox to display the trace.

3. Turn the VERTICAL GAIN front panel knob for the selected channel. *OR*

Touch inside the **Volts/Div** field and enter a value. Click the **keypad** button to enter a value using the pop-up keypad, or use the up/down arrows.

The set voltage is shown on the trace descriptor label and in the Volts/Div field in the dialog.

Adjusting the Waveform's Position

Turn the VERTICAL OFFSET adjust front panel knob directly above the channel button whose waveform you want to move vertically. Or you can touch inside the **Offset** field and type in a value on the pop-up keypad. To set the vertical offset to zero, touch the **Zero Offset** button directly below the **Offset** field.

Coupling

The choices of coupling are as follows:

- DC 50 Ω
- GROUND
- DC 1 MΩ
- AC 1 MΩ

Overload Protection

The maximum input voltage depends on the input used. Values are displayed on the front of the oscilloscope. Whenever the voltage exceeds this limit, the coupling mode automatically switches from DC 50 Ω to GROUND. You then have to manually reset the coupling to DC 50 Ω , described in the steps to follow.

While the unit does provide this protection, damage can still occur if extreme voltages are applied.

Setting Coupling

- 1. Touch Vertical → Channel X Setup... from the menu bar.
- 2. Touch inside the **Coupling** control and select a coupling mode from the pop-up menu.

Probe Attenuation

Setting up Probe Attenuation

LeCroy's ProBus system automatically senses probes and sets their attenuation for you. If you want to set the attenuation manually,

1. In the menu bar, touch **Vertical**, and then select a channel from the drop-down menu.

 Touch inside the Probe Atten. data entry control and provide a value using your preferred input control method - for more information regarding the touch screen controls, refer to Dialog Area (on page 46).

3. Now, touch a divide-by menu selection

OR

Touch Var (variable). If you choose Var, type in a value.

Bandwidth Limits

Reducing the bandwidth also reduces the signal and system noise, and prevents high-frequency aliasing.

Setting Bandwidth Limits

Set bandwidth limits as follows:

- 1. In the menu bar, touch **Vertical**, and then select a channel from the drop-down menu.
- Touch inside the Bandwidth control and provide a Bandwidth Limit value using your preferred input control method - for more information regarding the touch screen controls, refer to Dialog Area (on page 46). Bandwidth filters are available at the following levels:

WaveRunner - 1 GHz, 200 MHz, and 20 MHz.

PLEASE NOTE THE FOLLOWING:

- Each oscilloscope contains only the Full selection and those bandwidths less than the rated oscilloscope bandwidth.
- Anti-aliasing filters are applied to limit bandwidth at lower sample rates, regardless of bandwidth limit selection.

Linear and (SinX)/X Interpolation

Linear interpolation, which inserts a straight line between sample points, is best used to reconstruct straight-edged signals such as square waves. (Sinx)/x interpolation, on the other hand, is suitable for reconstructing curved or irregular wave shapes, especially when the sample rate is 3 to 5 times the system bandwidth.

Interpolation Setup

- 1. Touch the button for the channel you want to set up (channel 1, for example).
- In the dialog area, touch inside the Interpolation data entry control under Pre-Processing. Pre-Processing is meant as before Math processing.
- 3. Touch inside the **Interpolation** data entry control. A pop-up menu appears offering **Linear** or **Sinx/x** interpolation. Touch the button for the desired interpolation type.

Inverting Waveforms

If available on your instrument, touch the **Invert** checkbox to invert the waveform for the selected channel.

Finding Scale

You can access the **Find Scale** button from the channel setup dialog. This feature automatically calculates peak-to-peak voltage, and chooses an appropriate Volts/Div scale to fully display the waveform.

Using Find Scale

- 1. Touch the trace label for the waveform you desire.
- 2. Touch the Find Scale button.

Variable Gain

Variable Gain lets you change the granularity with which the gain is incremented. For example, when **Variable Gain** is disabled, the gain increases or decreases in preset increments each time you touch the **Up/Down** buttons.

However, when **Variable Gain** is enabled, you can increase or decrease the gain in increments as small as 0.1 mV/div, depending on the waveform scale.

Enabling Variable Gain

- 1. Touch the descriptor label for the waveform whose gain you want to vary.
- 2. Touch the Variable Gain checkbox.

Channel Deskew

Unlike the Deskew math function, channel Deskew does no resampling, but instead adjusts the horizontal offset by the amount that you enter. The valid range is dependent on the current timebase +/- 9 divisions.

Channel Deskew Setup

- 1. In the menu bar, touch **Vertical**; from the drop-down menu, select a channel to set up.
- Touch inside the **Deskew** data entry control and provide a value using your preferred input control method - for more information regarding the touch screen controls, refer to **Dialog Area** (on page 46).

Trigger

Trigger Overview

Triggering is the way an oscilloscope selects an exact moment in time on a signal to then be shown on the screen. If the pattern of a signal happens to be repetitive, a continuous waveform pattern is inherently visible on the display.

But without a regular signal pattern, the oscilloscope requires controls to determine what specific point in time (when a trigger is met) to show the signal on the display. This is accomplished and affected in a variety of ways.

Some trigger settings allow for pre-trigger, post-trigger, and a delay between the time of the trigger event and the time when the display is refreshed (or sweeped) and the waveform is again shown on the screen.

The instrument uses many waveform capture techniques that trigger on features and conditions that you define. These triggers fall into the following major categories:

- Simple Triggers activated by basic waveform features or conditions such as a positive or negative slope, and hold-off
- SMART Triggers sophisticated triggers that enable you to use basic or complex conditions for triggering. Use SMART Triggers for signals with rare features, like glitches.
- Measurement Trigger triggers that allow you to leverage parameter measurements as waveform trigger conditions. A measurement trigger is either the only trigger or the final trigger in a chain of trigger events including hardware triggers.
- MultiStage Triggers varied forms of triggers including Cascaded, QualFirst, and Qualified allowing varied combinations of triggers and trigger stages.

Trigger Types

There are a set of standard Trigger Types. These Triggers are basic waveform features or conditions such as a positive or negative slope, and hold-off and are available on all oscilloscopes along with tools like **Software Assisted Trigger** and **Trigger Scan**.

In addition, there are more sophisticated triggers for setting basic or complex conditions. These include **Smart Triggers**, **Serial Trigger**, **Measurement Triggers**, and **MultiStage Triggers**.

Learn more and Contact LeCroy for Support (on page 188).

Edge

A simple trigger, Edge trigger is activated by basic waveform features or conditions such as positive or negative slope, and holdoff.

Width

Width trigger allows you to define a positive- or negative-going pulse width bounded by a voltage level, above or below which a trigger will occur. Or you can specify a pulse width and voltage range, within or outside of which a trigger will occur.

Pattern (Logic)

Logic trigger enables triggering on a logical combination (pattern) of five inputs: CH1, CH2, CH3, CH4, and AUX. You have a choice of four Boolean operators (AND, NAND, OR, NOR), and you can stipulate the high or low voltage logic level for each input independently.

Smart

These are a specific set of sophisticated trigger types. Smart trigger types are used to set conditions on signals with rare features, like the glitches and others as follows:

WINDOW

A smart trigger occurs when a signal enters or exits a window defined by adjustable thresholds.

INTERVAL

While Glitch trigger performs over the width of a pulse, **Interval** trigger performs over the width of an interval - the signal duration (the period) separating two consecutive edges of the same polarity: positive to positive or negative to negative. Use interval trigger to capture intervals that fall short of, or exceed, a given time limit. In addition, you can define a width range to capture any interval that is itself inside or outside the specified range - an Exclusion trigger by interval.

GLITCH

Glitch trigger is a simpler form of Width trigger. Use Glitch trigger when you want to define a fixed pulse-width time or time range only. Glitch trigger makes no provision for voltage levels or ranges.

DROPOUT

Used primarily in single-shot applications, and usually with a pre-trigger delay, **Dropout** trigger can detect lost signals. The trigger is generated at the end of the timeout period following the last trigger source transition.

RUNT

The **Runt** trigger occurs when a pulse crosses a first threshold line, but fails to cross a second threshold line before recrossing the first. Other defining conditions for this trigger are the edge (triggers on the slope opposite to that selected) and runt width.

SLEW RATE

SlewRate trigger activates a trigger when the rising or falling edge of a pulse crosses two threshold levels: an upper level and a lower level. The pulse edge must cross the thresholds faster or slower than a selected period of time.

Measurement

This trigger type allows you to leverage parameter measurements as waveform trigger conditions. A measurement trigger is either the only trigger or the final trigger in a chain of trigger events including hardware triggers.

ΤV

Not available on all instruments, **TV** triggers provide stable triggering on standard or custom composite video signals. Use them on PAL, SECAM, NTSC, or HDTV systems.

MulitStage

Touching this **MultiStage** trigger type shows the additional MultiStage types on the dialog. Select from **Cascaded**, **QualFirst**, and **Qualified** as follows:

CASCADED

The Cascaded trigger allows you to define successive trigger **Stages** (referred to as Stage **A**, **B**, **C**, and **D**) as **arm**, **trigger/arm**, **trigger/arm**, **trigger** criteria, respectively.

QUAL**F**IRST

In single trigger mode, **QualFirst** arms the oscilloscope on the A event, and then triggers on all subsequent B events.

Note: This button is enabled when using the sequence sampling mode. It is commonly used in sequence mode for disk drive applications with the index pulse defined as the A qualifier signal and the servo gate signal as the B triggering events.

QUALIFIED A-B

In single trigger mode, **Qualify A-B** arms the oscilloscope on the A event, and then triggers on the B event. If the oscilloscope is in Normal trigger mode, it automatically resets after the B event. Arm trigger events can be set for **Edge**, **Pattern**, **State**, and **PatState**. State is briefly explained as follows:

State

The **State** trigger is a level-qualified trigger which requires that the qualifying signal remain above or below a specified voltage level for a trigger to occur. For State trigger, you specify the time or number of events after the signal has gone above or below the voltage level when you want the trigger to occur.

Serial Trigger

Protocol-enabled serial trigger capabilities are available as options on several oscilloscope models.

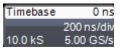
Clock and Data Recovery (CDR)

80-bit Serial Trigger (without decode capability) is standard on SDA model oscilloscopes and optional on WavePro, WaveMaster, and DDA model oscilloscopes. The CDR feature is optional for the WaveRunner Zi family, including 8b/10b decode.

Trigger Settings

Horizontal and Vertical adjustments are typically made for all trigger types using either the **Delay** or **Level** knobs on the front panel of the instrument or their respective controls on the **Timebase** setup dialog.

 Horizontal: Turn the DELAY knob in the HORIZONTAL control group to adjust the trigger's horizontal position. Or, touch inside the Delay control and provide a value on the Timebase dialog using your preferred input control method - for more information regarding the touch screen controls, refer to Dialog Area (on page 46).


The trigger location is shown by a marker under the grid.

Post-trigger delay is indicated by a left-pointing arrow at the lower-left of the grid.

The time value is given in the title line of the **Timebase** label at the lower-right of the grid.

• Vertical: Turn the LEVEL knob in the TRIGGER control group to adjust the trigger's vertical threshold.

Turn this knob to adjust the level of the trigger source or the highlighted trace. Level defines the source voltage at which the trigger will generate an event: a change in the input signal that satisfies the trigger conditions.

Alternatively, in the Trigger dialog, you can touch inside the **Level** control and provide a value using your preferred input control method - for more information regarding the touch screen controls, refer to **Dialog Area** (on page 46). Quickly set a level of zero volts by touching the **Zero Level** button.

An arrow on the right side of the grid shows the threshold position. This arrow is only visible if the trigger source is displayed.

Trigger Setup

Based on your **Trigger Type** selection, sections of the main Trigger dialog and additional dialogs altogether vary.

Most trigger types have **Type**, **Setup**, and **Level** selections. The following sections explain some of the standard setup configurations for different trigger types.

Getting Started Manual

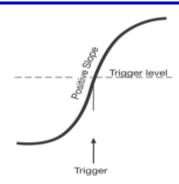
1. Make your **Type** selection by touching the button corresponding to the desired trigger.

2. Touch inside the trigger **Source** control for your first **Setup** configuration and select a source on which to trigger.

3. If available, touch inside the **Coupling** control and select a coupling mode.

Coupling refers to the type of signal coupling at the input of the trigger circuit. Choices of trigger coupling vary by oscilloscope model.

With DC coupling, all of the signal's frequency components are coupled to the trigger circuit for high-frequency bursts.


 Touch inside the trigger Slope control and choose the direction of the trigger voltage transition used for generating a particular trigger event.

The selection is then shown to the right of the dialog as follows for a Positive Slope selection on an Edge Trigger.

Getting Started Manual

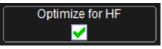
Edge trigger works on the selected edge at the chosen level. The slope (positive or negative) is specified on the Trigger label permanently shown to the lower-right of the grid.

4. Level defines the source voltage at which the trigger circuit generates an event (a change in the input signal that satisfies the trigger conditions). The selected trigger level is associated with the chosen trigger source. Note that the trigger level is specified in volts and normally remains unchanged when the vertical gain or offset is modified.

The Amplitude and Range of the trigger level have limits as detailed in the datasheet specifications regularly maintained on <u>www.lecroy.com</u>.

Touch inside the **Level** data entry control and provide a value using your preferred input control method - for more information regarding the touch screen controls, refer to **Dialog Area** (on page 46).

Provide a voltage level (in millivolts).


PLEASE NOTE THE FOLLOWING:

• Once specified, **Trigger Level** and **Coupling** are the only parameters remaining unchanged as you switch from trigger mode to trigger mode for each trigger source.

• Some additional controls and dialogs for triggers that differ are provided in the following topics as examples.

Optimize for HF

The Optimize for HF checkbox can be used on an **Edge** trigger to reject high or low frequencies.

The checkbox is marked by default; meaning, the instrument is optimized for high-frequency waveforms.

Note: If you are measuring a waveform that is 10 MHz or slower, be sure to unmark the checkbox to avoid triggering on an incorrect slope.

Width Condition is

Width triggers (and other triggers equipped with conditional logic) have conditional logic settings as follows.

Your Width Condition can be specified as Less Than, Greater Than, In Range and Out Of Range.

In Range and Out Of Range conditions can be further set with Upper and Lower Values (for Limits).

OR

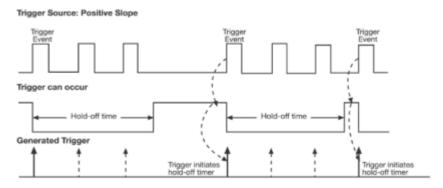
Nominal width and Delta (for Delta).

Note: Width Condition settings are summarized on the far right of the dialog.

Holdoff by Time or Events

Holdoff is an additional condition of Edge and Pattern triggers. It can be expressed either as a period of **time** or an **event** count. Holdoff disables the trigger circuit for a given period of time or number of events after the last trigger occurred. Events are the number of occasions on which the trigger condition is met. The trigger resumes when the holdoff has elapsed and its other conditions are met.

Select the holdoff by touching the **Time** or **Events** buttons on the **Holdoff** dialog.

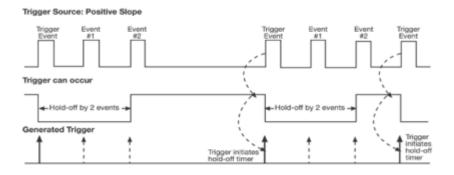


Now, click the corresponding control and provide a value.

Use holdoff to obtain a stable trigger for repetitive, composite waveforms. For example, if the number or duration of sub-signals is known you can disable them by choosing an appropriate holdoff value. Qualified triggers operate using conditions similar to holdoff.

HOLD OFF BY TIME

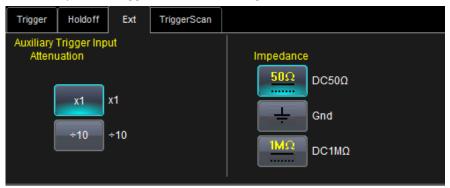
Sometimes you can achieve a stable display of complex, repetitive waveforms by placing a condition on the time between each successive trigger event. This time would otherwise be limited only by the input signal, the coupling, and the instrument's bandwidth. Select a positive or negative slope, and a minimum time between triggers. The trigger is generated when the condition is met after the selected holdoff time, counted from the last trigger. The delay is initialized and started on each trigger.



Edge Trigger with Holdoff by Time. The bold edges on the trigger source indicate that a positive slope has been selected. The broken upward-pointing arrows indicate potential triggers, which would occur if other conditions are met. The bold arrows indicate where the triggers actually occur when the holdoff time has been exceeded.

HOLD OFF BY EVENTS

Select a positive or negative slope and a number of events. An event is the number of times the trigger condition is met after the last trigger.


A trigger is generated when the condition is met after this number, counted from the last trigger. The count is restarted on each trigger. For example, if the event number is two, the trigger will occur on the third event.

Edge Trigger with Holdoff by Events (in this example, two events). The bold edges on the trigger source indicate that a positive slope has been selected. The broken, upward-pointing arrows indicate potential triggers, while the bold ones show where triggers actually occur after the holdoff expires.

Auxiliary Input Trigger

Some instrument models provide auxiliary input trigger capability. It's done as a pattern trigger, on the **Ext** dialog.



Select **X1**, or **÷10**. You can also select from **DC50Ω**, **Gnd**, and **DC1MΩ Impedance** values.

TriggerScan

TriggerScan is a debugging tool (available for any trigger type) that helps you quickly find rare waveform glitches and anomalies. With TriggerScan, you can build a list of trigger setups to look for rare events and automatically sequence through each one. TriggerScan can use any type of trigger setup available including edge, width, and qualify as well as Smart Triggers (such as, glitch and runt triggers). TriggerScan automates two key processes in triggering rare events:

- Trains the system by looking at normal acquired waveforms. During the training, the oscilloscope analyzes the waveforms to determine what waveforms normally look like. Using this information, it generates a list of smart trigger setups to trigger on abnormal situations.
- 2. Loads the smart trigger setups from the Trainer and cycles through these. As triggers occur, they are overlaid on the screen. All acquisition settings are preserved and you can use all the functions of the oscilloscope to find the root cause of these anomalies including, WaveScan, Histograms, and advanced analysis.

Training TriggerScan

The TriggerScan Trainer inspects a currently acquired waveform and automatically builds a list of common trigger setups used to find rare events.

PLEASE NOTE THE FOLLOWING:

- You must acquire and display at least 3 cycles of a signal before running the Trainer.
- You should run the Trainer if you want to change the trigger types or if you change the channel or signal.
- 1. Touch **Trigger** → **Trigger** Setup... from the menu bar.
- 2. On the **Trigger** dialog, click the **TriggerScan** tab.
- 3. Touch the **Trainer** button and select a channel as the source for the training on the **Trigger Scan Trainer** pop-up. Also choose the types of triggers the Trainer should use to train the system and then touch the **Start Training** button. The training begins. When it is complete, a list of smart trigger setups is displayed in the Trigger List.

Starting TriggerScan

After you have run the Trainer, the Trigger List displays a list of smart trigger setups. You can add or remove trigger setups. You can also update the selected smart trigger setup. Once you have made any changes to the Trigger List, you are ready to start scanning.

- 1. Touch **Trigger** → **Trigger** Setup... from the menu bar.
- 2. On the **Trigger** dialog, click the **TriggerScan** tab and its corresponding dialog is shown.

- 3. If you want to add a new trigger setup, touch the **Trigger** tab and set the new trigger as desired on the **Trigger** dialog. Then, back on the **TriggerScan** dialog, touch the **Add New** button to append the new trigger to the **Trigger List**.
- 4. If you want to replace the selected trigger setup with the current trigger setup, highlight the setup in the Trigger List and touch the **Update Selected** button.
- 5. If you want to shown a specific trigger setup on the Trigger List, highlight its corresponding row on the list, and then touch the **Load Selected** button.

Note: If you want to delete all trigger setups in the Trigger List, touch the **Delete All** button.

- 6. If you want to delete a trigger setup, highlight the setup in the Trigger List and touch the **Delete Selected** button.
- All trigger setups can be deleted regardless of selections on the Trigger List with one step by touching the **Delete All** button.
- Once you have made any changes to the Trigger List, touch the Trainer button and then restart the scan by touching the Start Training button on the Trigger Scan Trainer pop-up. The oscilloscope automatically sequences through all the trigger setups.

PLEASE NOTE THE FOLLOWING:

- You can tune the dwell time that the oscilloscope waits before loading the next trigger setup using the **Dwell Time** data entry control.
- If you have Persistence display mode enabled, all trigger events are recorded on the display. Refer to the **Persistence Setup** (on page 94) topic for instructions on enabling Persistence display mode.
- If you want TriggerScan to stop when the next oscilloscope trigger, check the **Stop On Trigger** checkbox. You can use this to isolate specific trigger setups.

Saving TriggerScan Setups

You should save TriggerScan setups once you have made any modifications to the Trigger List. The current Trigger List is not be preserved after exiting the application unless you save it.

 On the TriggerScan dialog, touch inside the Setup File Name data entry control and providing a file name using your preferred input control method - for more information regarding the touch screen controls, refer to Dialog Area (on page 46).

OR

Touch the **Browse** button and select a location and file name.

2. Touch the **Save Setup...** button.

Note: You can load previously saved TriggerScan setups by touching the **Browse** button, locating the file, and then touching **Load Setup...**.

Viewing Waveforms

Display

Display Overview

Oscilloscope display grids present the trace information in a voltage vs. time format. The oscilloscope analog-to-digital converter (ADC) information is displayed vertically on the grid with the ADC bits divided proportionally according to their amplitude on the grid.

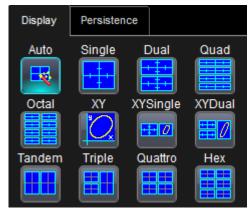
Channel traces are typically 8-bits of vertical data, whereas Math traces are 16-bits of vertical data. LeCroy grids consist of eight vertical divisions.

When displaying channel traces on the grid, use of less than full-grid amplitude results in some reduced vertical resolution and accuracy. For instance, if a channel trace is displayed as two divisions high on a grid, the number of ADC bits utilized is...

2/8 * 2^8 or 64 bits

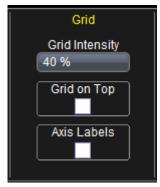
This is quite less than the full 8-bit resolution. Such a reduction in vertical resolution may be acceptable if the primary measurement consideration is for rough timing measurements; however, if vertical accuracy or extreme timing accuracy is a requirement, it is better to increase the amplitude of the signal to utilize close to maximum grid height. Accomplishing this - while still providing the ability to view many signals at one time on the oscilloscope display - LeCroy provides **multi-grid** capability. This creates multiple oscilloscope grids, each with 8-bit vertical resolution, and allows many full-resolution grids (but vertically smaller in grid height) for concurrent display without affecting the vertical resolution.

Different grid displays are available based on instrument and installed software packages. For example, some displays show side-by-side, instead of vertically stacked grids. The additional grid displays offer more convenient views of multiple waveforms. Refer to your instrument datasheet at <u>www.lecroy.com</u> for detailed information as to which grid displays are provided with your oscilloscope.


Display Setup

Access and adjust the different display configurations on our oscilloscope using the following steps:

Note: Not all grid styles are available on all instruments. Grid styles vary based on both oscilloscope model and whether or not you have the SDAII software option loaded on your oscilloscope. Learn more about software options and **Contact LeCroy for Support** (on page 188).


1. Touch **Display** → **Display Setup...** on the menu bar.

2. Touch one of the **Display combination buttons**.

PLEASE NOTE THE FOLLOWING:

- Small images label each **Display combination** button and indicate its corresponding grid configuration.
- **Autogrid** automatically adds or deletes grids as you select more or fewer waveforms to display.
- 3. Touch inside the Grid Intensity data entry control(as follows).

Provide a value from 0 to 100.

4. Touch the **Grid on top** checkbox if you want to superimpose the grid over the waveform.

Note: Depending on the grid intensity, some of your waveforms may be hidden from view when the grid is placed on top. To undo, simply uncheck **Grid on top**.

- 3. Touch the **Axis labels** checkbox to permanently display the values of the top and bottom grid lines (calculated from volts/div) and the extreme left and right grid lines (calculated from the timebase).
- 4. Choose a line style for your trace: solid Line or Points as follows:

5. Touch inside the trace **Intensity** data entry control if you want to change the value.

Enter a value from 0 to 100.

Note: Access the Monitor tab for external monitor display settings. Refer to the **External Display** topic for more details.

SEQUENCE MODE DISPLAY

Set up a Sequence Mode display by first selecting a **Sequence** trigger mode in the **Timebase** → **Horizontal Setup** dialog. You must also have entered a **Num Segments** value. For more information on setting up Sequence Mode, see the **Sequence Sampling Mode** (on page 56) topic.

- 1. Touch **Display** → **Display Setup...** on the menu bar.
- 2. Touch inside the **Display Mode** control and select a display mode from the pop-up menu.

Touch inside the **Num seg displayed** control and enter a value, using the pop-up keypad.

Touch inside the **Starting at** control and enter a value.

Moving Traces from Grid to Grid

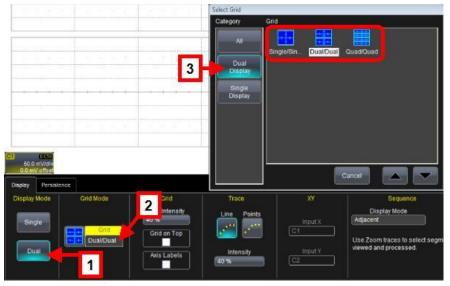
You can move traces from grid to grid with the touch of a button.

Moving a Channel or Math Trace

1. Touch the trace descriptor label for the waveform you want to move.

2. Touch the **Next Grid** button.

Note: If you have more than one waveform displayed on only one grid, a second grid automatically opens when you select **Next Grid**.


Displays Containing Masks

Since masks are pixel-based display renderings, you can think of them as part of the Display feature set on your instrument. Masks and mask testing are applied to waveforms as part of **Pass/Fail** functionality accessed from **Analysis** → **Pass/Fail** from the menu bar.

Note: For more detailed information about Masks and other Pass/Fail functionality, such as removing a mask from your display, refer to **Mask Testing** (on page 134).

Dual Display Grid Selection

Make a dual grid display selection for showing on an external display (once properly connected to the I/O panel) by selecting **Display** → **Display Setup...**. Numbered labels on this image correspond with the following steps.

Note: First-time setup may show a different Display tab. Fix this by touching **File** \rightarrow **Exit** on the menu bar and re-launching the oscilloscope software using the **Start DSO** shortcut on the desktop.

- 1. Touch the **Dual** button on the Display Mode section of the Display dialog.
- 2. Touch inside the **Grid** control on the Grid Mode section of the dialog. The **Select Grid** pop-up is shown.
- 3. Touch the **Dual Display** category and choose from **Single/Single**, **Dual/Dual**, and **Quad/Quad** options.

Your grid selection is now shown on both displays.

Persistence

Persistence Overview

The Persistence feature helps you display your waveform and reveal its idiosyncrasies or anomalies for a repetitive signal. Use Persistence to accumulate on-screen points from many acquisitions to see your signal change over time. The instrument persistence modes show the most frequent signal path in three-dimensional intensities of the same color, or graded in a spectrum of colors.

You can show persistence for up to eight inputs for any channel, math function, or memory location (M1 to M4).

Persistence Setup

Touch **Display** → **Persistence Setup...** on the menu bar.

Now, touch the **Persistence On** checkbox and refer to the following scenarios based on your needs.

Persistence Setup for All Input Channels at Once

1. Touch the **All Locked** button.

2. Touch one of the **Mode** buttons.

- 3. Touch the **Show last trace** checkbox if you want the last trace displayed.
- 4. Touch inside the **Saturation** data entry control and provide a whole number integer.

For more information on saturation, see the **Saturation Level** topic.

5. Touch inside the **Persistence time** data entry control and make a selection from the pop-up menu.

Persistence Setup for Each Input Channel Individually

1. Touch the **Per Trace** button.

2. Touch one of the **persistence mode** buttons next to an input channel.

To turn off persistence for an individual channel, touch the leftmost persistence mode button next to the channel.

OR

For each input channel, touch its tab to set up persistence for that channel.

3. Touch one of the **mode** buttons.

- 4. Touch the **Show last trace** checkbox if you want the last trace displayed.
- 5. Touch inside the **Saturation** data entry control and enter a whole number integer,.
- 6. Touch inside the **Persistence time** data entry control and make a selection from the pop-up menu.
- 7. If you want to return all input channel setups to their default settings, touch the **Reset All** button.

WaveStream Display Mode

This fast viewing mode provides brightness-graded intensity with a decay time similar to the action of phosphor on an analog screen.

WaveStream mode operates at up to 80 GS/s with an update rate of up to several thousand waveforms/second for better capture of higher frequency abnormal events.

Adjusting Trace Intensity

The INTENSITY knob adjusts the brightness of your trace.

The intensity value is shown in the bottom-right corner of the screen.

Intensity (41 %)

PLEASE NOTE THE FOLLOWING:

Pushing the **Intensity** knob changes the Persistence status in the following ways.

- **OFF** When the button hasn't been pushed, it may be turned to control the trace **Intensity** control value.
- Analog Persistence When the button is pushed once, the waveform resembles a trace on a phosphor oscilloscope. Turning the knob affects persistence with a blended form of Intensity and Saturation. As the knob is turned clockwise, the Intensity value increases while the Saturation value decreases. The opposite occurs when the button is turned counter clockwise.

Intensity	Saturation
13 %	49 %

• **Color Persistence** - The button behaves the same way as Analog. However, the grid display shows a color waveform where red indicates most frequent occurrences while blue denotes the less frequent.

Instead of using the knob, you can provide values for **Intensity** (same control on Display and Persistence dialogs) or **Saturation** controls.

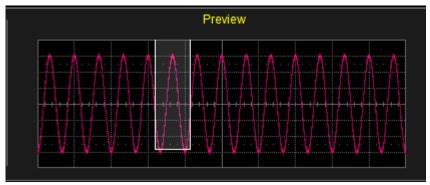
Zooming Waveforms

Zooming Waveforms Overview

You can magnify a selected region of a waveform using the Zoom function. You can display up to four Zoom (Z1 - Z4) and eight Math Zoom traces (F1 - F8).You can zoom:

- a single channel (known as **To Zoom a Single Channel** (on page 98))
- a math or memory trace (known as **Zooming Memory or Math Function Traces**)
- multiple waveforms at once (known as **To Zoom Multiple** Waveforms Quickly (on page 100))
- segments in a sequence (found in Sampling Modes → Sequence Sampling Mode (on page 56)

You can also use the Multi-Zoom Math function to create time-locked zoom traces for selected waveforms using **Multi-Zoom**.


At any time, you can zoom a portion of a channel waveform or Memory/Math function trace by touching and dragging a rectangle around any part of the input waveform, see the **To Zoom by Touch-and-Drag** (on page 100) topic. The zoom trace will size itself to fit the full width of the grid. The degree of magnification, therefore, will depend on the size of the rectangle that you draw.

You can also use the front panel **QUICKZOOM** button to create multiple zooms, one for each displayed input channel. For more information, see the **To Zoom Multiple Waveforms Quickly** (on page 100) topic.

Previewing Zoomed Waveforms

When you zoom a waveform, a preview of the zoomed area is shown on the **Preview** section of the **Zx** dialog.

Zooming a Single Channel

The **Zoom** button appears as a standard button at the bottom of the channel **Cx Vertical Adjust** setup dialog for you to create a zoom trace of your input waveform.

On the menu bar, touch Vertical → Channel X Setup....
 OR

Touch the channel trace descriptor label for a displayed channel.

2. Touch the **Zoom** at the bottom of the **Cx Vertical Adjust** dialog. A zoom trace (one of Z1 to Z4) is created for the selected channel.

3. Vary the degree of zoom by touching the newly created **Zx** trace label. The setup dialog for the zoom (Z1 to Z4) opens. It shows the current horizontal and vertical zoom factors.

 If you want to increase or decrease your horizontal or vertical zoom in small increments, touch the Var. checkbox to enable variable zooming. Now with each touch of the zoom control buttons, the degree of magnification changes by a small increment.

OR

If you want to zoom in or out in large standard increments with each touch of the zoom control buttons, leave the **Var.** checkbox unchecked.

OR

If you want to set exact horizontal or vertical zoom factors, touch inside the Horizontal **Scale/div** data entry control and provide a time-per-div value using your preferred input control method - for more information regarding the touch screen controls, refer to **Dialog Area** (on page 46). Then touch inside the Vertical **Scale/div** control and enter a voltage value.

PLEASE NOTE THE FOLLOWING:

To reset the zoom to x1 magnification, touch **Reset Zoom** in the dialog.

You can also use the Zoom and Math front panel knobs to adjust the horizontal and vertical zoom.

- Horizontal Position Press to reset the horizontal zoom position to zero. Turn to change the horizontal position of the selected math or zoom trace.
- Horizontal Ratio Press to toggle between fixed and variable horizontal zoom ratio adjustment. Turn to change the horizontal zoom ratio of the selected math trace.
- Quick Zoom Press to automatically display magnified views of up to four signal inputs on multiple grids. With four input signals, the signals are displayed along with four zoom traces, each on its own grid. Pressing this button also turns off all other traces.

- Vertical Position Press to reset the vertical zoom position to zero. Turn to change the vertical position of the selected math or zoom trace.
- Vertical Ratio Press to toggle between fixed and variable vertical zoom ratio adjustment. Turn to change the vertical zoom ratio of the selected math trace.

Touch-and-Drag Zooming

 Touch and drag a rectangle around any part of an input channel waveform, math trace, or memory trace. The **Zoom** (Z1 to Z4) dialog opens.

Note: If you have enclosed a combination of channel and math or memory traces in the rectangle, a pop-up **Rectangle Zoom Wizard** is shown. Touch a **Zoom** button (Z1 to Z4).

2. Turn off the zoom traces by touching the **Undo** button at the topright corner of the screen.

OR

Uncheck the **Trace On** checkbox in the dialog for each zoom trace.

Quickly Zooming Waveforms and Multiple Waveforms

Quickly create a Zoom trace by either pressing the front panel **Zoom** button or touching the Zoom button on the respective channel dialog.

Turning Off Zoom

Turn off a Zoom by either pressing the front panel **Zoom** button again.

OR

On the corresponding Zoom dialog, touch the **Trace On** checkbox to remove the check mark and disable the zoom trace.

Measuring with Cursors

Measuring with Cursors Overview

Cursors are important tools that aid you in measuring signal values. Cursors are markers - lines, cross-hairs, or arrows - that you can move around the grid or the waveform itself. Use cursors to make fast, accurate measurements and eliminate guesswork. There are two basic types:

- Horiz(ontal) (generally Time or Frequency) cursors are markers that you move horizontally along the waveform. Place them at a desired location along the time axis to read the signal's amplitude at the selected time.
- Vert(ical) (Voltage) cursors are lines that you move vertically on the grid to measure the amplitude of a signal.

Cursor Measurement Icons

Each cursor locates a point on the waveform. The cursor values can be read in the descriptor label for the trace. Use the **Position** data entry controls at the right side of the dialog to place the cursors precisely. The **Readout** icons depict what is being measured for each measurement mode.

Absolute

Displays the absolute Y position.

Delta

Displays the difference in Y values. The value can be read in the descriptor label for the trace.

Abs+Delta

Displays absolute and delta cursors together.

Slope

Displays the slope between cursors.

If there are non-time-domain waveforms displayed, there will also be a menu offering choices of x-axis units: **s** or **Hz**, for example.

Cursors Setup

Quick Display

At any time, you can change the display of cursor types (or turn them off) without invoking the **Cursors Setup...** dialog as follows:

 On the menu bar, touch Cursors, then Off, Abs Horizontal, Rel Horizontal, Abs Vertical, or Rel Vertical. OR

Press the CURSOR TYPE button on the front panel repeatedly to scroll through each cursor type. Turn the CURSORS knobs to adjust the position of the cursor.

Note: The bottom cursor knob adjusts relative cursors. It does not work with absolute cursor types.

 The cursors displayed assume the positions previously set up. If you want to change their position or measurement mode, touch Cursors → Cursors Setup... on the menu bar.

Absolute Cursors Setup

 Touch Cursors → Cursors Setup... on the menu bar. The Standard Cursors dialog opens.

- 2. In the dialog area, touch the **Cursors On** check box to display them.
- 3. Touch the Horizontal Abs or Vertical Absmode button.
- 4. Touch inside the **Position 1** data entry control and type in a value for the cursor.

OR

Use the **Cursors** knobs on the front panel to place the cursor.

Setting Up Relative Cursors

- Touch Cursors → Cursors Setup... on the menu bar. The Standard Cursors dialog opens.
- 2. In the dialog area, touch the **Cursors On** check box to display them.
- 3. Touch the Horizontal Rel or VerticalRel mode button.
- 4. Touch a readout parameter button: **Absolute**, **Delta**, **Abs+Delta**, or **Slope**.
- 5. Touch inside the **Position 1** and **Position 2** data entry controls and type in a value for each cursor.

OR

Use the **CURSORS** knobs on the front panel to place the cursors.

6. If you want both cursors to move in unison as you adjust the position, touch the **Track** check box to enable tracking.

Cursors on Math Functions

You can place cursors on a math function whose X-axis has a dimension other than time (FFT, for example). On the **Cursors Setup...** dialog, an **X-Axis** menu is available where you can choose the units. For example, if you are placing cursors on a histogram, select **V** (histo).

Measurement Parameters

Measurement Parameters Overview

Parameters are measurement tools that determine a wide range of waveform properties. Use them to automatically calculate many attributes of your waveform, like rise-time, rms voltage, and peak-to-peak voltage, for example.

There are parameter modes for the amplitude and time domains, custom parameter groups, and parameters for pass and fail testing. You can make common measurements on one or more waveforms.

Turning On Parameters

- 1. Touch **Measure** → **Measure Setup...** on the menu bar.
- 2. Touch the **On** checkbox for each parameter you want to enable.
- 3. Touch the **Show Table** checkbox to display the parameters below the grid.

Quick Access to Parameter Setup Dialogs

You can quickly gain access to a parameter setup dialog by touching the parameter list box below the grid.

For example, touch within **P1** below the grid (previous) to display the P1 setup dialog.

Measure P1 P2	P3	P4 P5	P6	P7	P8	
	уре	Source P2	e1	┣─┌	_P_+P_(Math Operator P Sum
measure on waveforms		Source P3	e2			-Summary
+ - math on • parameters		Actions for P1				(P2+P3)
HD advanced HD web edit		Histogram	n	 TT	rend	Markers Always On Detailed
LeCroy						

Touch the row titles (as follows) to display the top Measure dialog.

Measure	P1:ampl(C1)
value	295.6 mV
status	×

Parameter Setup

- 1. Touch the parameter tab (**Px**) of an unused location or one that you want to change.
- 2. Under Type, select a measurement type:

Measure On Waveforms

Applies measurements directly on the waveform as indicated on the **Source1** control.

Math On Parameters

Performs math (addition, subtraction, multiplication, division) on parameters indicated on the **Source1** and **Source2** controls.

Advanced Web Edit

Selecting this type uses LeCroy's Processing Web for measurement setup. This feature, available with the XWEB option, allows you to chain practically unlimited math functions together for operation on your waveform measurements.

3. Touch inside the **Source1** field and select a channel, math trace, memory trace, or other waveform to be measured.

4. If you selected **Measure On Waveforms**, touch inside the **Measure** field and select a parameter from the pop-up menu.

OR

If you selected **Math On Parameters**, touch inside the **Math Operator** data entry field and select a math function from the pop-up menu.

Se	elect Measuremen	t			
Γ	Category	Choices	\$		
	Param		Name	Description	
	Math	Pn§Pm	P MinMax	Minimum or Maximum of two parameters	
		PP.	P pkpk	Peak to peak value of a set of parametric measurements	
		P _n *P _m	P Product	Calculate product of two parameters	
		P _n +P _m	P Ratio	Compute the ratio of two parameters	
		y=ax+b	P Rescale	a*(param value) + b	
		₿vbs	P Script	Visual basic script which produces a parameter from one two input parameters	
		⇔Pn start	P Start	Time of start of domain over which the input parameter wa measured	
		P _n +P _m	P Sum	Adds two parameters	
		•		4 III	
				Cancel	

- 5. In the mini-dialog to the right of the main setup dialog, touch the **Gate** tab to narrow the span of measurement as covered in the **Measure Gate** topic (available in the online help files).
- Touch the Accept tab to define parameter values to be used in the measurement - as covered in the Qualified Parameters topic (available in the online help files).

Measure Modes

The selections for Measure Mode allow you to quickly apply parameters for **standard vertical** and **standard horizontal** setups, and custom setups.

Standard Vertical Parameters

These are the default Standard Vertical Parameters:

Vertical							
mean	sdev	max.	min.	ampl	pkpk	top	base

Standard Horizontal Parameters

These are the default Standard Horizontal Parameters:

Horizontal							
freq	period	width	rise	fall	delay	duty	num points

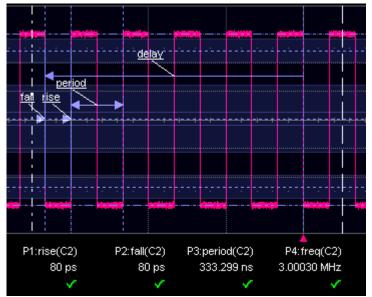
Selecting Measure Modes

- 1. Touch **Measure** → **Measure Setup...** on the menu bar.
- 2. Under **Measure Mode**, select the **Std Vertical** or **Std Horizontal** buttons.

Note: You can customize parameters by touching **My Measure**. Learn more in the Customize a Parameter topic (available in the online help files).

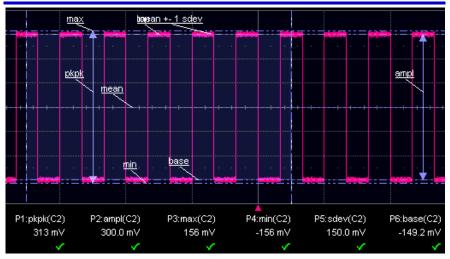
3. Touch inside the **Source** data entry control and choose a source for which the measurements should apply.

Help Markers


Help Markers clarify parameter measurements by displaying movable cursors and a visual representation of what is being measured.

For the **at level** parameters, Help Markers make it easier to see where your waveform intersects the chosen level. This feature also displays the hysteresis band that you have set about that level.

You also have the option, by means of an **Always On** checkbox, to leave the Help Markers displayed after you have closed the Help Markers setup dialog.


You have a choice of **Simple** or **Detailed** views of the markers:

- The **Simple** selection produces cursors and Measure Gate gate posts. The gate posts are independently placeable for each parameter.
- The **Detailed** selection produces cursors, Measure Gate gate posts, a label identifying the parameter being measured, and a level indicator and hysteresis band for **at level** parameters (not part of Standard Horizontal or Standard Vertical parameters).

Standard Horizontal Parameter Help Markers

Getting Started Manual

Standard Vertical Parameter Help Markers

Help Markers Setup

- 1. Touch **Measure** → **Measure Setup...** on the menu bar.
- 2. Select a Measure Mode: **Std Vertical**, **Std Horizontal**, or **My Measure**.
- Touch the Show All button (as follows) to display Help Markers for every parameter being measured on the displayed waveform (C2 in the previous examples).

4. Touch a **Px** for any listed parameter; it doesn't matter which.

Now, on its corresponding dialog, touch inside the **Help Markers** control and select **Simple** or **Detailed**. The **Simple** selection produces cursors and Measure Gate gate posts. The gate posts are independently placeable for each parameter.

The **Detailed** selection produces cursors, Measure Gate gate posts, a label identifying the parameter being measured, and a level indicator and hysteresis band for "at level" parameters.

Note: The choice of **Simple** or **Detailed** is applied to all parameters at the same time. That is, if you choose Simple markers for one parameter, all parameters are then displayed in this mode.

5. Touch the **Always On** checkbox if you want to continuously display Help Markers for this parameter.

TURNING OFF HELP MARKERS

1. Touch the **Clear All** button to turn off Help Markers for all parameters.

 Turn off Help Markers for individual parameters by touching the Px tab for the parameter in question. Then uncheck the AlwaysOn checkbox. When you close this dialog, the Help Markers for this parameter are no longer shown.

Measurement Parameter Analysis Measurement Parameter Analysis Overview

LeCroy provides a variety of unique capabilities for advanced measurement parameter analysis. Most LeCroy oscilloscopes calculate measurements for all instances in the acquisition. This provides the ability to rapidly and thoroughly analyze a long memory acquisition and calculate thousands or millions of parameter values, or find anomalous measurements. A variety of views are then provided allowing quick and easy measurement value understanding, as follows:

- Histograms provide a view of the measurement parameter distribution. See Create and View a Histogram (on page 113).
- Tracks provide a time-correlated view of a measurement parameter compared to other acquired channels or calculated

math traces. A common usage for track is to observe the modulation of a signal, such as amplitude, frequency, or pulse width modulation. See **Creating a Track View** (on page 121).

- **Trends** provide a view of the measurement parameter over an extended period of time and over multiple acquisitions. See **Creating and Viewing a Trend** (on page 120).
- **Pass/Fail Testing** (on page 122) allows definition of the normal or abnormal measurement parameter value with a definable pass/fail action alerting the operator when a condition is met.
- WaveScan allows searching through a single acquisition for a measurement parameter that meets a variety of conditions, or scanning through multiple acquisitions with allowable trigger actions when conditions are met. In addition, a variety of views can be used to understand the specific behaviors of searched or scanned measurement parameters. See Introduction to WaveScan (on page 139).

These capabilities are only possible with the measurement of every occurrence of a measurement parameter in a long acquisition.

Both Track and Trend are tools that can be used to plot measurement data and observe variations with respect to time. Differences between Track and Trend are summarized in the following table:

Characteristic	Track	Trend
Representation	Parameter value vs. time	Parameter value vs. event
Behavior	Non-cumulative (resets after every acquisition). Unlimited number of events	Cumulative over several acquisitions up to 1 million events

Characteristic	Track	Trend
Time Correlation to Other Data	Yes	No
Monitors an Evolution in the Frequency Domain	Yes	No. Trend points are not evenly spaced in time and therefore cannot be used for an FFT.
Monitors the Evolution of a Measurement Parameter over Several Acquisitions	No. Track resets after every acquisition.	Yes
Ensures No Lost Measurement Data	Yes. Maximum time period that can be captured is limited by acquisition memory and sampling rate.	No. Since data can be accumulated over many acquisitions, and since the oscilloscope takes time to calculate measurement values and to display data before the trigger is re- armed, data can be missed.

In general, Track is the tool to use if you want to capture a continuous stream of data spaced closely together. To understand the change in a parameter with time, Trend can be used if your data is spaced widely apart and longer than the dead-time of the oscilloscope between acquisitions. Think of Trend as a strip chart recorder for your oscilloscope.

Creating and Viewing a Histogram

Histograms are graphical representations of data which divides it into intervals or bins. These intervals/bins are plotted on a bar chart such that

the bar height relates to the number of data points inside each interval/bin. Various histograms can be setup using **Measure** or **Math** dialogs. Thumbnail versions of Histograms are called **Histicons**. Also, **Persistence** can be applied to Histograms.

PLEASE NOTE THE FOLLOWING:

1. The number of sweeps comprising the histogram is shown on the trace descriptor label:

2. The range of a histogram is limited to the portion of the trace that is visible on screen. That is, if you zoom in on a trace, the histogram does not contain data for that part of the original (no longer visible) trace.

Single Parameter Histogram Setup

Setup a single parameter histogram can be done from **Measure** or **Math** dialogs. The following sections demonstrate both methods.

SINGLE PARAMETER HISTOGRAM SETUP USING MEASURE

Touch **Measure** \rightarrow **Measure Setup...** on the menu bar to access the **Measure** dialog. The **My Measure** button should be selected by default on the **Measure** dialog.

There are two ways to select parameters when setting up your measurement. They only differ in the order of the steps.

• Using the Px Buttons on the Measure Dialog - After directly touching a Px button on the Measure dialog, the Select Measurement pop-up is shown.

The Select Measurement pop-up.

 Using a Corresponding Px Tab/Dialog - After directly accessing a corresponding Px dialog, touch the Measure control and the Select Measurement pop-up is shown.

Regardless of how you performed the previously described initial steps, at this point access your corresponding **Px** dialog to change other setup items as follows:

- 1. Touch inside the **Source1** control and select an input waveform from the **Select Source** window.
- 2. Touch inside the **Measure** field and select a parameter from the **Select Measurement** window.

 Touch the Histogram button at the bottom of the dialog. After touching this button, the Math selection for Histogram pop-up is shown. Select the desired Math Trace in which to store the results. Touch the Close button when you are finished.

Math select	Math selection for Histogram						
Into whic	Into which Math Trace would you like to place the results?						
F1	zoom(<c1>)</c1>	F5	zoom(C1)				
F2	perhist(Eye)	F6	zoom(C2)				
F3	zoom(C3)	F7	zoom(C3)				
F4	zoom(C4)	F8	zoom(C4)				
		Close					

Touch the **trace descriptor label** for the math trace just created for the results, and then touch the **Histogram** tab to access its right-hand dialog.

Numbered callouts on the previous image correspond with the following explanations.

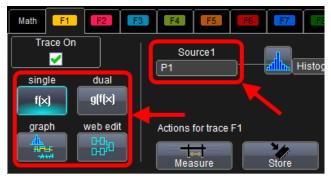
- On the Buffer side of the Histogram right-hand dialog, touch #Values and provide a value.
- 2. On the **Scaling** side of the **Histogram** right-hand dialog, touch **#Bins** and provide a value.
- 3. Center the histogram by touching the **Find Center and Width** button.

 Instead of using the Find Center and Width button, you can provide specific Center and Width values using their respective controls and providing values using the pop-up numeric keypad.

SINGLE PARAMETER HISTOGRAM SETUP USING MATH

Access the main Math dialog by selecting Math \rightarrow Math Setup... on the menu bar.

There are two ways to select your math operator during setup. They only differ in the order of the steps.


• Using the Fx Buttons on the Math Dialog - After directly touching an Fx button on the Math dialog, the Select Math Operator pop-up is shown.

Math functions are categorized into Basic and Special.

• Using a Corresponding Fx Tab/Dialog - After directly accessing a corresponding Fx dialog, touch the **Operator** control and the **Select Math Operator** pop-up is shown.

Regardless of how you performed the previously described initial steps, at this point access your corresponding **Fx** dialog if you want to change other setup items as follows:

- You can modify the source of your waveform used on a Math trace using the **source (Source 1)** control.
- On the far left of the Fx dialog, the single and dual buttons are available for one math function or math-on-math, respectively.
- The **web edit** button is used to access the Processing Web and sequence highly-detailed math functionality.
- Touch the **Graph** button, and then touch inside the **Graph with** control to select a graph mode (in this case **Histogram**).

At this point, access the Histogram right-hand dialog by touching the Histogram tab on the far-right of the screen. Follow the final 1 - 4 steps in the previous **Single Parameter Histogram Setup Using Measure** instructions.

Viewing Thumbnail Histograms (Histicons)

Histicons are miniature histograms of parameter measurements that appear below the grid. These thumbnail histograms let you see at a glance the statistical distribution of each parameter.

- 1. On the menu bar, touch **Measure**, then one of the Measure Mode buttons: **Std Vertical**, **Std Horizontal**, or **My Measure**.
- 2. Touch the **Histicons** checkbox to display thumbnail histograms below the selected parameters.

Note: For measurements set up in My Measure, you can quickly display an enlarged histogram of a thumbnail histogram by touching the Histicon you want to enlarge. The enlarged histogram appears superimposed on the trace it describes. This does not apply to **Std Vertical** or **Std Horizontal** measurements.

Persistence Histogram

You can create a histogram of a persistence display also by cutting a horizontal or vertical slice through the waveform. You also decide the width of the slice and its horizontal or vertical placement on the waveform.

Note: This math operation is different than the Histogram math operation and is not affected by **Center** and **Width** settings made on any existing Histograms.

PERSISTENCE HISTOGRAM SETUP

- 1. Touch **Math** → **Math Setup...** on the menu bar.
- Either directly touch an Fx button on the Math dialog and select your Math Operator, or touch an Fx tab to show its corresponding dialog and touch the Operator1 dialog to select your Math Operator. Select Phistogram from the Select Math Operator pop-up.

 With your math operator selected and the Fx dialog shown, touch inside the Source1 field and select a source from the popup.

- Touch the Phistogram tab to access its right-hand dialog. Now, touch the Slice Direction control and select Horizontal or Vertical slice from the pop-up.
- 5. Touch inside the **Slice Center** field and enter a value using the pop-up keypad.
- 6. Touch inside the **Slice Width** field and enter a value, using the pop-up keypad.

Persistence Trace Range

Using this math operatior, you can enter the percent of the persistence trace population to use in creating a new waveform.

Note: See previous sections for details around setting up a math trace and selecting your math operator if needed.

Persistence Sigma

Using this math operation, you can enter a scale, measured in standard deviations, by which to create a new waveform.

Creating and Viewing a Trend

- 1. In the menu bar, touch **Measure** → **Measure Setup...**.
- 2. Touch one of parameter tabs **Px** showing its corresponding dialog.
- 3. Now, on the dialog, touch inside the **Source1** data entry field and select an input waveform from the pop-up menu.
- 4. Touch inside the **Measure** data entry field and select a parameter from the pop-up menu.
- 5. Touch the **Trend** button at the bottom of the dialog.

Now, from the **Math selection for Trend** menu, select a math function location **Fx** in which to store the **Trend** display.

The Trend is then shown along with its respective trace descriptor label for the selected math function.



6. Touch the newly displayed Trend math function trace label to change settings on the Trend dialog (located on the Trend tab at the lower-right side of the screen).

Note: Turning off a trace for which trend data is being collected resets the trend. If it is necessary to continue data collection for the trend, first create a zoom trace of the channel trace (before turning off the channel trace).

Creating a Track View

- 1. In the menu bar, touch **Measure** → **Measure Setup...**.
- 2. Touch a parameter tab **Px** and its corresponding dialog is shown.
- 3. Now, on the dialog, touch inside the **Source1** data entry field and select an input waveform from the pop-up menu.
- 4. Touch inside the **Measure** data entry field and select a parameter from the pop-up menu.
- 5. Touch the **Track** button at the bottom of the dialog.

Now, from the **Math selection for Track** menu, select a math function location (**Fx**) on which to store the Track display. The Track is then shown along with its respective trace descriptor label for the selected math function.

6. Touch the newly displayed Track math function trace label if you want to change any settings in the **Track** dialog:

Zoom	Track				Close
"Track" function, giving a waveform of equivalent horizontal scale to the source			Vertical Scale Center 330.25568 mV		
horizontal scale to the source waveform, but of a measurement on that waveform.		Find Scale Auto Find	Height/div 20.0 mV Scale		

Pass-Fail Parameter Testing

Pass/Fail Parameter Testing Overview

Access the main **Pass/Fail** dialog by selecting **Analysis** \rightarrow **Pass/Fail Setup...** from the menu bar. The main **Pass/Fail** dialog is shown.

Access the respective **Qx** dialogs either by touching a **Qx** button on this main Pass/Fail dialog, or touching a **Qx** tab as described in **Displays Containing Masks** (on page 92).

When you have each of the **Qx** dialogs configured and enabled as desired, you can then begin your testing and turn them all on or off using the **Testing** checkbox on the main Pass/Fail dialog. You can also specify Actions for all or some of your conditions using the Actions dialog.

Testing and Enabling Pass/Fail Conditions

Beside each Qx button on the main Pass/Fail dialog is a corresponding Qx checkbox.

Use either these checkboxes or the ones on each respective **Qx** dialog to enable the specific condition for use.

When you have each of the **Qx** dialogs configured and enabled as desired, you can then begin your testing and turn them all on or off using the **Testing** checkbox on the main Pass/Fail dialog.

Your test data is shown on the Table display area shown in the previous screen-shot.

Pass/Fail Setup on Qx Dialogs

The Qx dialog contains several controls for specifying your Pass/Fail setup.

MAIN QX DIALOG CONTROLS

Use the **Source1** control to specify the waveform you'll use for your Condition.

Set your Pass/Fail condition by touching the **Condition** control on the corresponding Qx dialog. The Pass/Fail Condition pop-up is shown.

Select the desired condition.

Note: Right hand dialogs back on the corresponding Qx dialog vary based on the Pass/Fail condition selected.

The following sections cover the right hand dialogs for **Bool identity** and **Param and Dual Param Compare**. The **Mask test** condition is covered in **Mask Testing** (on page 134).

CONDITION-BASED RIGHT-HAND DIALOGS

The following provide some explanation about the different Conditions and their respective right-hand dialogs.

Boolean Identity

This condition simply passes the input values through as the desired result.

Param and Dual Param Compare

Using the Param Compare conditions, each Pass/Fail input (**Qx**) can compare a different parameter result to a user-defined limit (or statistical range) under a different condition.

Comparing a Single Parameter

 With the ParamCompare condition selected on a Qx dialog, touch inside the **Compare Values** field and select **All** or **Any** from the pop-up menu.

By selecting **All**, the test are true only if every waveform falls within the set limit. Selecting **Any** makes the test true if just one waveform falls within the limit.

2. Touch inside the **Condition** field on the **ParamCompare** part of the dialog and select a math operator from the pop-up menu.

 Touch inside the Limit field and enter a value using the pop-up numeric keypad. The value entered acquires the dimensions corresponding to the parameters being tested. For example, if you are testing a time parameter, the unit is seconds.

If you choose either **WithinDeltaPct** or **WithinDeltaAbs** from the **Condition** menu (respectively, previous), you also have the choice of setting the limit by means of the statistical buttons (relating to standard statistical limits) at the bottom of the **ParamCompare** dialog:

Comparing Dual Parameters

In **Dual Parameter Compare** mode, your oscilloscope can take parameter results measured on two different waveforms and compare them to each other. If desired, set your test to be true if **Any** or **All** waveforms fit the criteria set by the comparison condition.

Setups are conveniently shown in the Summary box of the **Qx** dialog as follows (shown on the Dual Param Compare right-hand dialog):

Summary]
	All P1 ≤ P2	
Summary		
	Any P1 ≤ P2	

- 1. Touch Analysis → Pass/Fail Setup... from the menu bar.
- 2. Touch one of the **Qx** tabs and a setup dialog for the position is shown.
- 3. Touch inside the **Condition** field in the main dialog and select **DualParamCompare**.

- 4. Touch inside the **Source1** and **Source2** fields and select a source from the pop-up menu.
- 5. Touch inside the **ParamCompare** mini-dialog field and select a source from the pop-up menu.
- 6. Touch inside the **Compare Values** field and select **All** or **Any** from the pop-up menu.

By selecting **All**, the test are true only if every waveform falls within the set limit. Selecting **Any** makes the test true if just one waveform falls within the limit.

7. Touch inside the **Condition** field on the **ParamCompare** part of the dialog and select a math operator from the pop-up menu.

- 8. Touch inside the **Limit** field and enter a value, using the pop-up numeric keypad. This value takes the dimension of the parameter that you are testing. For example, if you are testing a time parameter, the unit is seconds.
- If you choose either WithinDeltaPct or WithinDeltaAbs from the Condition menu respectively, touch inside the Delta field and enter a value.

The Actions Dialog

Various configurations can be made to all or some of your Pass/Fail conditions using the **Actions** dialog.

By touching the **Stop Test**checkbox in the **Actions** dialog, you can set up the test to end after a predetermined number of sweeps that you decide.

You can also decide the actions to occur upon your waveforms' passing or failing, by selecting one or all of the following:

- stop
- audible alarm
- print image of display
- emit pulse (if available)
- save waveform

The Pulse checkbox (shown right) causes a pulse to be output through the Aux Out connector at the front of the oscilloscope.

This pulse can be used to trigger another oscilloscope. You can set the amplitude and width of the pulse as described in Auxiliary Output Signals.

Depending on your oscilloscope model, you can configure up to 8 pass/fail conditions. The Boolean conditions to determine if your waveform passes are as follows:

Pass/Fail Boolean Conditions				
All True	All False			
Any True	Any False			
All Q1 to Q4 Or All Q5 to Q8	Any Q1 to Q4 And Any Q5 to Q8			

PASS/FAIL TESTING SETUP

Initial Setup

- 1. Touch Analysis → Pass/Fail Setup... on the menu bar.
- 2. Touch the **Actions** tab.
- 3. Touch the **Enable Actions** checkbox. This causes selected actions to occur on your waveform's passing or failing a test.

Getting Started Manual

4. Touch the **Summary View** checkbox to enable a line of text (as follows) showing a concise status of the last waveform and keeping a running count of how many sweeps have passed.

- 5. Touch inside the **Pass If** control, and select a Boolean condition from the choices shown.
- If you want to set up the test to end after a finite number of sweeps, touch the Stop Test checkbox. Then touch inside the After data entry control and provide a value using your preferred input control method - for more information regarding the touch screen controls, refer to Dialog Area (on page 46).
- 7. Use either the **Pass** or **Fail** button on the **If** section of the dialog to set actions taking place when your waveform passes or fails the test.

- 8. The Then section of the dialog provides stop test, sound alarm, print result, emit pulse, or save (the waveform) actions. If you want to have the results printed (and your oscilloscope is not equipped with a printer) make sure your instrument is connected to a local or network printer. Learn more in the Printing and Hardcopy FunctionsPrinting and Hardcopy Functions topic (available in the online help files).
- 9. If you want to save your waveform automatically, touch the Save Setup... checkbox. This takes you out of the current dialog and opens the Save Waveform dialog. Learn more in the Save Recall → Saving and Recalling WaveformsSaving and Recalling Waveforms topic (available in the online help files).
- 10. Test Pass/Fail conditions by touching the **Force Actions Once** button. Press the **Clear All** button to quickly uncheck all checkboxes and make new selections.

Math

Math Traces and Functions Overview

LeCroy offers a deep toolset of math functions always growing and changing to provide superior functionality.

Note: To find out which math tools are available in each optional package or for any detailed explanations about specific functionality, it's always a good idea to check the more comprehensive online help onboard your instrument, datasheet materials regularly maintained on the LeCroy website at <u>www.lecroy.com</u>, and to **Contact LeCroy for Support** (on page 188) and confer with your local LeCroy sales representative.

The extreme power of LeCroy's math functions is most evident when used:

- to perform mathematical functions on waveforms displayed on any channel **Cx**.
- to perform mathematical functions on waveforms recalled from memory **Mx**.
- as a source input waveform **Fx** in order to perform computations in sequence.
- as parameters **Px**.

Instruments offering more than one math trace provide even more enhanced capabilities. For example:

- setting up Trace F1 as the difference between Channels 1 and 2
- having trace F2 provide the average of F1
- having trace F3 provide the integral of F2
- go even further and display the integral of the averaged difference between Channels 1 and 2.

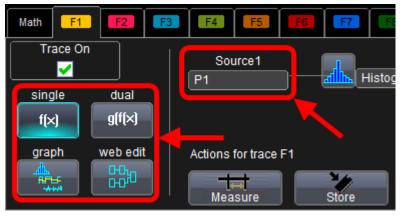
You can even chain traces and/or functions to another trace or function. For instance:

- making Trace F1 an average of Channel 1.
- making Trace F2 an FFT of F1.
- making Trace F3 a zoom of F2.

Math Setup

Access the main Math dialog by selecting Math \rightarrow Math Setup... on the menu bar.

There are two ways to select your math operator during setup. They only differ in the order of the steps.


• Using the Fx Buttons on the Math Dialog - After directly touching an Fx button on the Math dialog, the Select Math Operator pop-up is shown.

Select Math Operator								
Category			Choice	\$				
	Basic	^			Description	<u>_</u>		
	Math		sy2	Average	Averages the input			
	Special Math			Difference	Subtract input 2 from input 1			
	Eye Doctor	Ш		Envelope	Highest and lowest Y values at each X in N sweeps	=		
	Filter			Floor	Lowest Y value at each X in N sweeps			
	Frequency		-(v)	Invert	Inversion (negation) of input waveform			
	Analysis		×	Product	Product of two waveform inputs			
	Functions Graphing		÷	Ratio	Ratio of input 1 to input 2			
				Roof	Highest Y value at each X in N sweeps	-		
	Jitter Functions	Ŧ			Cancel	2		

Math functions are categorized into Basic and Special.

• Using a Corresponding Fx Tab/Dialog - After directly accessing a corresponding Fx dialog, touch the **Operator** control and the **Select Math Operator** pop-up is shown.

Regardless of how you performed the previously described initial steps, at this point access your corresponding **Fx** dialog if you want to change other setup items as follows:

- You can modify the source of your waveform used on a Math trace using the **source (Source 1)** control.
- Touch the **Single** function button if you want to perform just one math function on the trace, or touch the **Dual** function button to perform math on math (shown respectively, as follows).

- Touch the **Graph** button, and then touch inside the **Graph with** control to select a graph mode.
- Use the web edit button to access the Processing Web and form sequence highly detailed math functionality.

Mask Testing

Users may load or create a pixel-based mask on the display grid using a variety of methods. Test conditions can be set, and a pass/fail result returned based on whether the condition was found to be true or false. The source of the mask is always a trace (Channel, Zoom, Math waveform, etc.).

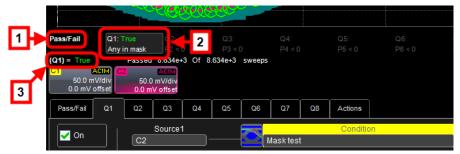
Creating a Mask

1. After selecting Analysis → Pass/Fail, the Pass/Fail dialog is shown.

• If you touch the Q1 button, a pop-up is shown where you can select the **Mask test** Pass Fail Condition.

Category	Choices				
PassFail	Name	Description			
Condition	1*P _N Bool identity	boolean identity			
	Dual Param Compare	Compare two parameter values			
	Mask test	Mask testing			
	compare	Compare parameter value against limit(s)			
	<				
		Cancel			

Now, the Q1 dialog is shown and shows the Mask test condition selected.


- If you touch the Q1 tab, the Q1 dialog is shown. Touching the Condition control shows the same pop-up where you can select the **Mask test** Pass Fail Condition.
- With the Mask test Pass Fail Condition selected, the Test, Load Mask, Make Mask, and Gate right-hand dialogs are shown and are where you manage, make, and apply gates to your mask.

For more detailed information about these right-hand dialogs, refer to **Pass/Fail Testing** (on page 122).

Quick Access to Pass/Fail Setup Dialogs

You can quickly gain access to the **main Pass/Fail** dialog, a **(Qx)** setup dialog, or the **Actions** dialog, by touching one of the following respective sections below the grid display.

Removing a Mask from the Display

Quickly remove a mask by accessing the **Qx** dialog. On the **Load Mask** right-hand dialog, click the **Delete** button.

Mask testing can be done using an existing mask, or by using a mask created from your actual waveform, with vertical and horizontal tolerances that you define. Existing masks can be loaded from a floppy disk or from a network.

You can set your mask test to be True for waveforms All In, All Out, Any In, or Any Out. For example, if you select All In, the test becomes False if even a single waveform falls outside the mask.

Masks that you create from your waveform can be confined to just a portion of the trace by use of a measure gate. Refer to the **Measure Gate** online help topic for more information on how this feature works.

Right-Hand Dialogs

• On the **Test** right-hand dialog, make a selection in the **Test is True** when group of buttons (as follows).

Note: The previous selection is for **All In** and means the test is False when a single waveform falls outside the mask.

From the **Show Markers** section of the dialog, choose whether or not to have mask violations displayed by touching either the **Off** or **On** button, respectively.

- When loading a pre-existing mask, use the **Load Mask** right-hand dialog. Using the **File** button, you can then enter the file name or browse to its location.
- When creating a new mask, use the Make Mask right-hand dialog.
 Touch the Browse button to create a file name and location for the mask if you want to save it.

Touch inside the **Ver Delta** and **Hor Delta** fields and enter boundary values, using the pop-up numeric keypad. You can also use the **Make from Trace** button to instantly create a mask from a new waveform.

• When creating a new mask, use the **Make Mask** right-hand dialog.

• On the **Gate** right-hand dialog, you can enter values in the **Start** and **Stop** fields to constrain the mask to a portion of the waveform. Or, you can simply touch and drag the Gate posts, which initially are placed at the extreme left and right ends of the grid.

WaveScan Overview

WaveScan enables you to search for unusual events in a single capture, or to scan for an event in many acquisitions over a long period of time. You can select from more than 20 search modes (frequency, rise time, runt, duty cycle, etc.), apply a search condition (slope, level, threshold, hysteresis), and begin scanning in a post-acquisition environment. Since the scanning modes are not simply copies of the hardware triggers, but software triggers, the capability is much greater.

For instance, there is no frequency trigger in any oscilloscope, yet WaveScan allows for quick frequency scans. You can accumulate a data set of unusual events separated by hours or days, enabling faster debugging. The events are time stamped, table indexed, and event rows can be selected for individual viewing.

You can also set actions to occur automatically when unusual events are found: stop the acquisition, emit an audible beep, output a pulse as shown in **Auxiliary Output Signals** (on page 169), print the screen as shown in **Printing and Hardcopy Functions** (on page 161), save waveforms as shown in **Saving and Recalling Waveforms** (on page 152), or create a LabNotebook[™] entry as shown in **My Lab Notebook Overivew** (on page 144).

Enable	Mode Edge	Source1	Filter Method No Filter	Filter Wizard
Table	Overlay	Histogram Zoor	na nigge	ound r Action
dx Edge Tim 1 -749.10			None	Pulse AUX Outpu
			Stop Acquisition	Print Screen
2 -415.84 3 -82.20 4 250.89 5 584.39	18 ns			ar nin corecu

Signal Views

WaveScan provides distinct views of your signal:

- **Source (Channel View)**view highlights all occurrences of edges that meet your criteria.
- Scan Overlay places all captured edges one on top of the other in a separate grid. You can apply monochromatic persistence in this view.
- Scan Histogram provides a statistical view of edges that meet your search criteria.
- Zoom allows you to expand a waveform feature vertically and horizontally; to apply further processing (using Measure); to Store it, or to apply a descriptive Label to the feature (as shown on the Actions portion of the trace dialog).

Note: The number of grids displayed varies from one to three grids depending on which views are enabled. WaveScan handles this function automatically, and there is no option to move traces from one grid to another, as would be the case under normal (non-WaveScan) operation.

Search Modes

Search modes are used to locate anomalies during acquisition.

- Edge Mode for detecting the occurrence of edges; selectable slope and level
- Non-monotonic Mode for detecting threshold re-crosses; selectable slope, hysteresis, and level
- **Runt** for detecting pulses that fail to cross a threshold; selectable polarity and thresholds
- Measurement Mode for filtering and performing parameter measurements
- Serial Pattern Searches from 2 to 64 bits; ideal for bursted patterns where a PLL cannot lock.

• **Bus Pattern** – Searches from 2 to 64 bits; enhances MSO search capabilities.

Parameter Measurements

Besides parameter measurements made during acquisition, postacquisition measurements can also be made. The number of parameters available depends on the options loaded on your instrument. Measurements are made only on the events defined by your filter (search criteria). A **Filter Wizard** is provided to quickly establish statistical criteria such as ±1, 3, or 5 sigma.

Sampling Mode

Whenever WaveScan is enabled, the instrument reverts to Real-time sampling mode.

Customization Overview

The instrument provides powerful capability to add your own parameters, functions, display algorithms, or other routines to the oscilloscope user interface without having to leave the instrument application environment. You can customize the instrument to your needs by using the power of programs such as Excel[™], Mathcad[™], and MATLAB[™], or by scripting in VBS. Whichever method you use, the results appear on the instrument's display together with the signals that you started with. This ability offers tremendous advantages in solving unique problems for a large range of applications, with comparatively little effort from you.

Instrument customization provides these important capabilities:

- You can export data to programs, without leaving the instrument environment.
- You can get results back from those programs, and display them on the instrument, without leaving the instrument application environment.
- Once the result is returned, you can perform additional oscilloscope operations, such as measuring with cursors, applying parameters, or performing additional functions on the waveform, in exactly the same way as for a normal waveform.
- You can program the oscilloscope yourself.

The instrument does not just provide connectivity with data downloads to other programs. It provides true customizable interaction with these other programs, and allows you to truly customize the oscilloscope to do the exact job you want it to do. The advantages to this are many:

- You can use the standard processing power of the instrument to do most of your calculations.
- You only need to write the function, parameter, display algorithm, etc. that specifically applies to your need and that the instrument doesn't contain.
- You can view the final result on the instrument display, and use all of the instrument's tools to understand the result.

• You can do additional processing on the result by applying either standard instrument parameters, functions, etc. to the returned result, or even more powerfully, adding chained customized functions. For example, you can do an Excel calculation on a result with a MATLAB function applied to it.

Documenting Your Work Using LabNotebook

LabNotebook Overivew

LeCroy's LabNotebook feature extends the documentation capabilities of your oscilloscope. It allows you to create an annotated notebook entry containing all displayed waveforms, the setup of the DSO, and user-supplied annotations. The notebook entry can then be converted to hardcopy format - .pdf, .rtf, or .html - and printed or e-mailed. You can also use the default report layout or configure your own, and even substitute your own company logo in the header.

Notebook entries are stored in an internal database and are available for recall at any time. Besides storing the waveform data, LabNotebook also stores your panel setups and parameter measurements. You can also back up the database to external media.

The Flashback feature allows you to recall the state of the DSO at a later date, including the saved waveforms and the DSO setup, so you can make additional measurements. A keyword filter makes it easy to find and recall a specific notebook entry.

You can choose which notebook to use for your entries, and label the notebook by project or user. This is especially useful if the oscilloscope is shared among several users and/or used for different projects as data can be kept separate how you see fit. Similarly, hardcopy reports can be stored in different folders.

Note: If your external monitor is connected, the LabNotebook automatically opens on the external monitor.

LabNotebook

When LabNotebook is accessed by File \rightarrow LabNotebook on the menu bar, the main LabNotebook dialog is shown by default.

This dialog is where you can **store** and **create** LabNotebook entries. You also can **View**, **Create**, **E-Mail**, and select an **output format** for your reports.

Numbered sections on this dialog correspond with the following explanations.

Note: Before creating a new Notebook Entry, you should first configure your preferences in **Preferences**.

- 1. You can create a notebook entry by either:
- Touching File → Create Notebook Entry on the menu bar.
- Touching the **Create** button on the main LabNotebook dialog.

Regardless, the **Enter Notebook Info** pop-up is shown where you can provide a title and comments for the entry. By default, the entry is titled with the current date and time.

Enter Notebook Info						
Enter Report Title:						
6/5/2008 11:07:05 AM						
Enter Report Description:						
Save Skip Cancel						

Touch inside the **Title** control and provide a value using your preferred input control method - for more information regarding the touch screen controls, refer to **Dialog Area** (on page 46). If desired, touch inside the **Description** field, provide information and touch **Save**.

PLEASE NOTE THE FOLLOWING:

- When an entry is first created and Report Title and Description information is provided, your new entry is shown along with The Drawing Toolbar at the top of the screen.
- When finished and the Done button is touched from the Drawing Toolbar, your new entry is shown on the My Notebook Entries list.
- My Notebook Entries list shows the entries you've already stored on your instrument. With a stored entry selected on the My Notebook Entries section of the dialog, you can do the following:
- 3. Touch the **Flashback (Recall)** button to return your instrument to the state it was in when the Notebook Entry was saved. Exit Flashback by touching the Undo Flashback button in the top-right corner of the screen, or touch the Auto Trigger front panel control.

PLEASE NOTE THE FOLLOWING: The flashback feature currently recalls the DSO Setup, and all displayed waveforms. Some of result data is not recalled, including:

- **Persistence data** While it is saved in hardcopy and is printed on the report, it is not recalled during Flashback.
- **Histogram data** Histograms internally have a 32-bit resolution, but when stored into a trace file and recalled during flashback they are clipped to 16-bits.
- Floating point waveforms Certain math operations result in the creation of floating point waveforms with much higher resolution than can be stored in a 16-bit waveform file. This extra resolution is not preserved when traces are recalled using flashback.

- Cumulative Measurements Any measurements on when the Lab Notebook entry is created are not saved individually in the database (other than being embedded in the hardcopy image). This means that when flashback is used, the measurements are recomputed using the recalled waveform data. Normally, doesn't pose a problem; however, if cumulative measurements were on when the entry was stored and the cumulative measurements accumulated data from multiple acquired waveforms, they lose their history and show instead only the results from the stored waveforms.
- You can use the Up and Down arrows to move through your My Notebook Entries list one row at a time. If you have a large amount of entries, touch the Filter button and the Filter Entries pop-up is shown.

Filter Entries					
Show only	Show only records created on this date				
Day:	Month:	Year:			
1	1	2004			
	OR				
Show only records containing this keyword					
Keyword:					
Cancel		Find Now			

Provide a **Date** and/or **Keyword** and touch the **Find Now** button to apply your filter to the **My Notebook Entries** list.

5. Use the View, Create Report, and E-Mail buttons as desired. The More Actions button shows the Specific Entry dialog for the entry selected on the My Notebook Entries list. Using this dialog is explained in Managing Notebook Entry Data in the online help.

- You can select the Format of your LabNotebook entry from HTML, RTF, and PDF choices. The Delete button removes the specific row selected on the My Notebook Entries list while the Delete All button removes every entry on the list.
- 7. Marking the **Multi Selection** checkbox shows the **Select All, Clear All, Select, Clear**, and **Print** buttons.

The **Select All, Clear All, Select**, and **Clear** buttons are used to select/deselect multiple entries on the **My Notebook Entries** list. The **Print** button can only be used for Multi Selection printing of **My Notebook Entries** from the main LabNotebook dialog.

Note: If selected in **Preferences**, your entry can show your waveforms in **print colors**. This means it's printed on a white background in order to save printer ink. Otherwise, waveforms are shown on a black background.

 Use the **Delete** button to delete the selected entry (or entries if the Multi Selection checkbox is marked). The **Delete All** button can be used to remove all notebook entries shown on the My Notebook Entries list with the touch of a single button.

Save/Recall

Save/Recall Overview

The **Save/Recall** section allows for storage and retrieval of **Waveforms**, **Table Data**, and **Instrument Setups**. It even provides **Disk Utilities** for arranging the file/folder structure on your instrument's hard drive.

Directly access each Save/Recall dialog (Waveform, Table, Setups, and Disk Utilities on the File menu on the menu bar.

A main Save/Recall dialog is shown providing buttons to access the aforementioned dialogs for specific Save/Recall functions.

Note: While the **Disk Utilities** (on page 172) is the final dialog of these Save/Recall functions, it's actually considered part of the **Utilities** menu and is therefore covered in that section of the documentation.

Saving and Recalling Setups

The Save/Recall Setup dialogs allow for quick saving and recalling of up to six oscilloscope panel settings internally on your instrument. If desired, you can also save and recall your oscilloscope panel settings as an .lss file to a specific hard disk location, a network location, or USB drive.

Saving Oscilloscope Setup(s)

Access the **Save Setup...** dialog by either selecting **File** \rightarrow **Save Setup...** from the menu bar or clicking the **Save Instrument Setup** button on the main Save/Recall dialog. Now use one of the following two methods to save setup(s).

SAVING SETUP(S) INTERNALLY ON YOUR INSTRUMENT

Save your settings **internally on your instrument** by touching inside one of the six **SetupX** data entry controls on the **Save to Internal Setup...** part of the screen and providing a name. Now, touch its corresponding **Save** button directly to the left.

Your setup file is then saved to the **D:\Internal Setups** location on your instrument and the current date/time is shown above the **SetupX** data entry control.

OR

SAVING SETUP(S) DIRECTLY TO A FILE

Save your setup(s) **directly to a file** by touching the **File** button on the **Save To** section on the dialog. Now, touch inside the **Save files in directory** control and provide a path to the destination folder. Or touch **Browse** to navigate to the destination folder. Finally, touch the **Save Now** button.

Recalling Oscilloscope Setup(s)

Access the **Recall Setup...** dialog by either selecting **File** \rightarrow **Recall Setup...** from the menu bar or clicking the **Recall Instrument Setup** button on the main Save/Recall dialog. Now use one of the following two methods to save setup(s).

Recalling Setup(s) Internally on Your Instrument

Recall your settings located **internally on your instrument** by touching inside one of the six **Recall** buttons on the **Recall From Internal Setup...** part of the screen.

Each Recall button is labeled with a corresponding setup storage slot. If a setup is stored, **SetupX** is shown along with the **date/time of the save**, otherwise, the slot is labeled **Empty**.

OR

RECALLING SETUP(S) DIRECTLY FROM A FILE

Recall your setup(s) **directly from a file** by using controls on the **Recall From File** section on the right side of the dialog. Touch inside the **Recall panel from file** data entry control and provide a path to the destination folder. Or touch **Browse** to navigate to the destination folder. Finally, touch the **Recall Now** button.

Recalling Default Settings

Some of the default settings for your oscilloscope include the following configurations:

- Channels 1 and 2 are turned on at 50 mV/div, 0V offset, linear interpolation
- All other measurements are cleared for Math, Reference Waveforms, and Channels
- Trigger is set to Channel 1 with an Auto positive edge, DC coupled, and with a 0V level
- The Timebase set to 50 ns/div, 10ks, 20 GS/s, and with zero delay
- Smart memory is set to Set max memory with 100ks selected
- The Cursors are turned off
- The Grids are set to AutoGrid

If you want to reset the settings to the default configuration, press the **DEFAULT SETUP...** front panel button

OR

Your instrument's default settings can be recalled at any time using the **Recall Default** button.

Saving and Recalling Waveforms

Saving Waveforms

The Save Waveform dialog is used to save displayed waveforms to either a memory trace or to text or binary file formats.

Access the **Save Waveform** dialog by either selecting **File** \rightarrow **Save Waveform** from the menu bar or clicking the **Save Waveform** button on the main Save/Recall dialog.

Use the numbered sections of this Save Waveform dialog, which correspond with the following explanations, to properly save your waveform(s).

1. Select either **Memory** or **File** by touching either respective button on the **Save To** portion of the dialog.

Note: When **Memory** is selected, only **Source** and **Destination** controls are shown on the Save Waveform dialog. When **File** is selected, many more controls are available. Regardless, the controls are used as explained in the following steps.

- Touch inside the Source control and select a source from the Select Source pop-up. The source can be any trace; for example, a channel (C1–C4), math function (F1–F4), or a waveform stored in non-volatile RAM (M1–M4).
- 3. **Destination** Click to show the available memory traces when saving to memory.
- 4. Touch inside the **Trace Title** data entry control to change the default name of your waveforms (if desired).

Note: You can change the name but not the sequence number.

If you use a name ending with a number instead of a letter, the instrument may truncate the number. This is because, by design, the first waveform is automatically numbered 0, the second 1, etc.

For example, if you want to use waveform name **XYZ32** but it is not preceded by waveforms XYZ0 through XYZ31, the waveform is renumbered with the next in sequence.

If you need to use a number in your waveform's name, append an alpha character at the end of the number: **XYZ32a**, for example.

5. If you are saving to a file, touch the **Data Format** control and select a format type.

• **Binary** - saves the file to LeCroy's binary file format. This format is documented in various Remote Control Manuals for LeCroy Oscilloscopes. Selecting **Binary** results in the smallest possible file size, and is recommended when recalling waveforms to LeCroy instruments.

Note: Binary files can be converted to ASCII using LeCroy utilities such as **ScopeExplorer** or **WaveStudio**.

- **ASCII** -Text output file (.txt extension).
- **MATLAB** Text output file compatible with MATLAB (.dat extension).
- **Excel** Text output file compatible with Excel (.csv extension).
- **MathCad** Text output file compatible with Excel (.prn extension).

Depending on your selection, you may need to touch the **SubFormat** control and select a subformat.

- Word Available when selecting the Binary format, specifies the samples in the output file are represented with 16 bits. Always use this option unless Byte mode is pre.
- **Byte** Available when selecting Binary format, specifies the samples in the output file are represented with 8 bits.

Note: Using this option can result in a loss of output file resolution.

- **Amplitude only** Specifies the output file include amplitude data for each sample, but not sample time information.
- **Time and Amplitude** Specifies the output file include both time and amplitude data for each sample.
- With Header Specifies to include a header with scaling information.

If you select **ASCII**, touch the **Delimiter** control and select a delimiter character from the pop-up menu. Choose from **comma**, **space**, **semicolon**, or **tab** delimiters.

PLEASE NOTE THE FOLLOWING:

- Select Audio to save your waveforms into the .wav format.
- The **WaveML** format, which enables XML output, is used for persistence traces.
- You can use the Auto Save feature to automatically save a waveform to disk after each new trigger. You can enable Auto Save from the Save Waveform dialog by touching one of the Auto Save buttons.

Select Wrap (old files overwritten) or Fill (no files overwritten).

Selecting **Fill** can quickly use up all the hard disk space on your instrument.

- 7. Touch the **Browse** button next to the **Save file in directory** control and navigate to the location where you want the file saved. The file name is assigned automatically and is shown under the control.
- 8. Finally, touch the **Save Now!** button.

Recalling Waveforms

Note: Only .trc files were saved in binary format can be recalled into the oscilloscope.

Access the **Recall Waveform** dialog by either selecting **File** \rightarrow **Recall Waveform** from the menu bar or clicking the **Recall Waveform** button on the main Save/Recall dialog.

Use the numbered sections of this Recall Waveform dialog, which correspond with the following explanations, to properly recall your waveform(s).

1. Select either **Memory** or **File** by touching either respective button on the **Recall From** portion of the dialog.

Note: When Memory is selected, only Source, Destination, and Show on recall controls are shown on the Recall Waveform dialog. When File is selected, many more controls are available. Regardless, the controls are used as explained in the following steps.

- If recalling from Memory, touch inside the Source control and select a source stored in non-volatile RAM (M1–M4) from the Select Source pop-up.
- 3. Touch inside the **Destination** control and select a location for storage (memory or file) from M1 to M4.
- 4. **Show on Recall** Mark this checkbox to have the memory trace shown on the grid display after recalling the waveform.
- When saving a File, touch inside the Show only files control and select an area to limit the search (channels, math functions, or memory).

- 6. Touch inside the Recall files from directory data entry control and provide the path. You can also touch the Browse button and navigate to the file. Touch inside the Next file will be recalled from data entry control and provide the path or, touch the Browse button to navigate to the file.
- 7. **Up /Down arrows** Use these buttons to cycles through files in the selected folder from the **Show only files** control.
- 8. When finished, touch the **Recall Now!** button.

Utilities

Utilities Setup

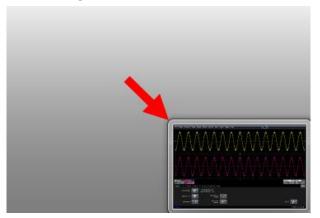
Utilities Overview

Access Utilities by touching **Utilities** \rightarrow **Utilities Setup...** on the menu bar. A variety of settings can be made on your oscilloscope using the Utilities.

Utilities settings are divided into three main sections: Utilities, Disk Utilities, and Preferences.

Utilities

Selecting **Utilities** → **Utilities Setup...** shows the main **Utilities** dialog by default. The following controls are available from this dialog:



• The HardCopy Setup, Date/Time Setup, and System Status buttons all open their corresponding dialogs.

Note: To the right of the **HardCopy Setup** button, display text indicates your currently selected printer for convenience.

• When touched, the **Show Windows Desktop** button instantly minimizes the oscilloscope (and any other) applications.

Maximize the application by touching the shortcut icon located on the lower-right of the screen.

 A sequence of calibration screens are shown when the Touch-Screen Calibration button is touched. These screens instruct you to touch a series of displayed crosses in order to improve precision and accuracy when using your touch screen.

PLEASE NOTE THE FOLLOWING:

- Use a stylus for this procedure. Using your finger for the calibration prompts provides insufficient accuracy for the procedure.
- The calibration procedure times out after ten seconds pass and no cross is touched.
- Avoid parallax errors by placing your line of sight directly in front of each cross before touching it.
- The **Service** button is a section of the application reserved for qualified LeCroy personnel. When touched, an access code pop-up is shown enabling LeCroy technicians access to various service dialogs inside the oscilloscope software.

Contact LeCroy for more information using **Contact LeCroy for Support** (on page 188).

Status

Control values are shown for information about your instrument. Among them include your Hardware and Software options.

View the oscilloscope's system status (including software and hardware configurations) on this Status dialog. The dialog displays read-only system information including **model number**, **serial number**, **firmware version**, and **installed software and hardware options**.

Adding Software Options

New software options can be added after purchasing a code and then enabling the option on the oscilloscope. Call LeCroy Customer Support to place an order and receive the code.

Note: For more information about LeCroy Software Options, **Contact** LeCroy for Support (on page 188).

 After adding new software options, the entire oscilloscope application needs to be restarted. Do this by touching the desktop shortcut.

 Restart the Windows[®] operating system on your instrument (if necessary) by rebooting the oscilloscope. Do this by pressing the power switch, and then turning the power back on after a tensecond wait.

Upon initial power-up, the oscilloscope automatically loads the instrument application software along with any additional software options.

Remote Communication

Use the **Remote** dialog to setup remote communication. You can select a network communication protocol, establish network connections, and configure the Remote Control Assistant log from the **Remote** dialog.

The choice of communication protocols is limited to TCPIP, GPIB, and USB488 (on specific models).

PLEASE NOTE THE FOLLOWING:

- GPIB is an option that either requires a GPIB card to be installed in an open card slot on your oscilloscope or the use of an external USB to GPIB LeCroy accessory. For more information about LeCroy Accessories, **Contact LeCroy for Support** (on page 188).
- The instrument uses Dynamic Host Configuration Protocol (DHCP) as its addressing protocol. Therefore, it is not necessary to set up an IP address if your network supports DHCP. If it does not, you can assign a static address in the standard Windows network setup menu.

The Remote Control Assistant monitors communication between your PC and oscilloscope when you are operating the instrument remotely. You can log all events or errors only. This log can be invaluable when you are creating and debugging remote control applications.

REMOTE COMMUNICATION SETUP

If you are connecting the oscilloscope to a network, first contact your Information Systems administrator. If you are connecting the oscilloscope directly to your PC, connect a GPIB or Ethernet cable between them.

- 1. On the **Remote** dialog, make a **Port** selection: **TCPIP** (transmission control protocol/Internet protocol) or **GPIB** (general purpose interface bus). If you do not have a GPIB card installed, the GPIB selection will not be accessible.
- If you are using GPIB, set a GPIB address by touching inside the GPIB Address data entry control and provide an address. OR

If you are using TCPIP, press the **Net Connections** button; the Windows **Network Connections** window opens. You can reconfigure the oscilloscope's connection if it is already connected to the network or make a new connection.

Note: Your instrument allows you to restrict remote control access to certain clients. To restrict access, under **Security**, touch the **Yes** button and enter the IP addresses or domain name server names you want to restrict separated by a comma.

CONFIGURING THE REMOTE CONTROL ASSISTANT EVENT LOG

- 1. Under **Remote Control Assistant**, touch inside the **Log Mode** data entry control. Select **Off**, **Errors Only**, or **Full Dialog** from the popup menu.
- Export the contents of the event log to an ASCII text file by touching the Show Remote Control Log button. The Event Logs pop-up is shown. Touch inside the DestFilename data entry control and provide a file name using your preferred input control method - for more information regarding the touch screen controls, refer to Dialog Area (on page 46).

Then, touch the **Export to Text File** button.

Printing and Hardcopy Functions

Your instrument provides the ability to output files to printers or plotters print to file, or e-mail your files. Any Microsoft Windows[®] supported printer is supported by your instrument.

The following Printing and Hardcopy procedures are explained here.

- Printer Setup
- Adding Printers and Drivers
- Default Printer Setup
- Printing Screen Images
- Printing
- Clipboard
- File
- E-mail

PRINTER SETUP

 Touch File → Print Setup... on the menu bar. The Utilities Hardcopy dialog opens.

OR

Press the PRINT front panel button. Then, touch the **Print Setup...** button on the **Print** flyout menu.

OR

Touch **Utilities** → **Utilities Setup...** and click the **Hardcopy** tab.

2. On the Hardcopy dialog, touch the **Printer** icon.

3. Under **Colors**, touch the **Use Print Colors** checkbox if you want the traces printed on a white background.

Note: A white background saves printer toner. (You can change the printer colors in the **Utilities** \rightarrow **Preference Setup** \rightarrow **Color** dialog.)

- 4. Touch inside the **Select Printer** control and choose a printer from the pop-up menu.
- 5. Touch the **Properties** button to see your printer setup.
- 4. Touch the icon for the layout **Orientation** you want: portrait or landscape.
- 5. Touch the **Hardcopy Area** control to choose which part of the screen you want to print from the pop-up menu.

Choose **Grid Area Only** if you do not need to print the dialog area and you only want to show the waveforms and grids. Choose **DSO window** if you want to print the dialogs with the waveforms and grids. Choose **Full Screen** if you want to print the entire screen.

Adding Printers and Drivers

Note: If you want to add a printer driver, the driver must first be loaded on the oscilloscope.

Touch File → Print Setup... on the menu bar.
 OR

Press the PRINT front panel button. Then, touch the **Print Setup...** button on the **Print** flyout menu.

OR

Touch **Utilities** → **Utilities Setup...** and click the **Hardcopy** tab.

2. On the Utilities Hardcopy dialog, touch the Printer icon.

3. Touch the **Add Printer** button. A Microsoft Windows[®] Printer window opens where you can add a printer.

PRINTING A SCREEN IMAGE

You can print in one of three ways:

• Press the **PRINT** front panel button. Then, touch the **Print Now** button on the **Print** flyout menu.

- Touch **File** → **Print** on the menu bar.
- Touch Utilities → Utilities Setup... and click the Hardcopy tab.

On the Hardcopy dialog, touch the Print Now button.

Note: The instrument uses the Print settings on the **Hardcopy** dialog to print the screen image.

So, you can either print from File \rightarrow Print or from Utilities \rightarrow Utilities Setup... (Hardcopy tab). However, the Hardcopy dialog provides some additional functionality like printing to the clipboard, or to a file. You can also choose to print the waveform and grids only, the waveform and grids with the dialog, or the entire screen. You can also e-mail your screen images.

PRINTING

Similar to Printing a Screen Image and alternatively to **File** \rightarrow **Print** (and using the additional setting from the Hardcopy dialog) choose from either of the following methods to quickly print from your instrument:

- Press the PRINT front panel button. Then, touch the **Print Now** button from the Print flyout menu.
- Touch Utilities → Utilities Setup... and click the Hardcopy tab. On the Hardcopy dialog, touch the Print Now button.

CLIPBOARD

The **Clipboard** selection on the **Hardcopy** tab saves the screen image on the clipboard so you can paste a file into another application (like Microsoft Word, for example). Choose from either of the following methods to save a screen image to your clipboard:

• Press the PRINT front panel button. Then, touch the **Save Screen To Clipboard** button from the Print flyout menu.

Note: Once you have configured your **Clipboard** settings from the **Hardcopy** dialog (using the next procedure), you can touch the PRINT front panel button and touch **Save Screen To Clipboard** on the **Print** flyout menu. The instrument automatically uses the additional clipboard settings to save the screen image to the clipboard.

 Touch Utilities → Utilities Setup... and click the Hardcopy tab. On the Hardcopy dialog, touch the Clipboard button.

 Touch the Colors control and choose Standard to print the screen as it appears, Print to print the waveforms on a white background, or Black & White to print the waveforms in black & white.

Note: Choosing Print colors saves printer toner or ink.

- Touch the Hardcopy Area control to choose which part of the screen you want to print. Choose Grid Area Only if you do not need to print the dialog area and you only want to show the waveforms and grids. Choose DSO window if you want to print the dialogs with the waveforms and grids. Choose Full Screen if you want to print the entire screen.
- 3. Touch the **Print Now** button.

FILE

The **File** selection on the **Hardcopy** tab saves the screen image as a file to storage media such as a USB drive or hard drive. Choose from either of the following methods to save a screen image to a file:

• Press the PRINT front panel button. Then, touch the **Save Screen To File** button from the Print flyout menu.

PLEASE NOTE THE FOLLOWING:

- The instrument's hard disk is partitioned into drive **C**: and drive **D**:. Drive C: contains the Windows operating system and the instrument application software. Drive D: is intended for data files.
- Once you have configured your Clipboard settings from the Hardcopy dialog (using the next procedure), you can touch the PRINT front panel button and touch Save Screen To File on the Print flyout menu. The instrument automatically uses the additional file settings to save the screen image to the file.
- Touch Utilities → Utilities Setup... and click the Hardcopy tab. On the Hardcopy dialog, touch the File button.

- 1. Touch inside the **File Format** data entry control and select a graphic file format from the pop-up menu.
- Touch the Colors control and choose Standard to print the screen as it appears, Print to print the waveforms on a white background, or Black & White to print the waveforms in black & white.

Note: Choosing **Print** colors saves printer toner or ink (when you eventually do print from the file).

- 3. Touch inside the **File Name** data entry control and provide a name for the display image using your preferred input control method - for more information regarding the touch screen controls, refer to **Dialog Area** (on page 46).
- Touch inside the **Directory** data entry control and provide the folder path for the resulting printout. Or touch the **Browse** button and navigate to the folder.
- Touch the Hardcopy Area control to choose which part of the screen you want to print. Choose Grid Area Only if you do not need to print the dialog area and you only want to show the waveforms and grids.

Choose **DSO window** if you want to print the dialogs with the waveforms and grids. Choose **Full Screen** if you want to print the entire screen.

6. Touch the **Print Now** button.

E-MAIL

The **E-mail** selection on the **Hardcopy** tab gives you the option to e-mail your screen images, using either the MAPI or SMTP protocols. Before you output to e-mail from the **Utilities** dialog, you first have to set up the e-mail server and recipient address in **Preference Setup...**. Choose from either of the following methods to e-mail your screen image:

• Press the PRINT front panel button. Then, touch the **Send Screen To E-mail** button from the Print flyout menu.

Note: Once you have configured your **E-mail** settings from the **Hardcopy** dialog (using the next procedure), you can touch the PRINT front panel button and touch **Send Screen To E-mail** on the **Print** flyout menu. The instrument uses the additional e-mail settings automatically.

 Touch Utilities → Utilities Setup... and click the Hardcopy tab. On the Hardcopy dialog, touch the E-Mail button.

1. Touch inside the **File Format** data entry control and select a graphic file format from the pop-up menu.

 Touch the Colors control and choose Standard to print the screen as it appears, Print to print the waveforms on a white background, or Black & White to print the waveforms in black & white.

Note: Choosing **Print** colors saves printer toner or ink (when you eventually do print from the file).

- 3. Touch the **Prompt for message to send with mail** checkbox if you want to include remarks with the image.
- 4. Touch the Hardcopy Area control to choose which part of the screen you want to print. Choose Grid Area Only if you do not need to print the dialog area and you only want to show the waveforms and grids. Choose DSO window if you want to print the dialogs with the waveforms and grids. Choose Full Screen if you want to print the entire screen.

5. Touch the **Print Now** button.

Aux Output

The **Aux Output** dialog allows you to specify Auxiliary and Calibration Output details.

 If you want a specialized output, touch one of the following buttons under Use Auxiliary Output For: Square Wave, Trigger Enabled, Trigger Out, Pass/Fail, or Off.

Note: If Pass/Fail is selected on this Use Auxiliary Output For section of the dialog, a Pulse Duration data entry control is made available. Provide a value within your instruments specified range using your preferred input control method - for more information regarding the touch screen controls, refer to Dialog Area (on page 46).

 On the Use Calibration Output For section of the dialog, choose Square, DC Level, or Off. If you want a 1 kHz, 1 V Square Wave, touch the Set to 1 kHz, 1 V Square Wave button.

Additional controls are made available based on **Square** or **DC Level** selections as follows:

- If you selected **Square** on the **Use Calibration Output For** section of the dialog, a **Frequency** data entry control is made available. You can set a value using your preferred input control method.
- If you selected Square or DC Level on the Use Calibration Output For section of the dialog, an Amplitude into 1 MΩ data entry control is made available. Provide a desired value using your preferred input control method.

AUXILIARY OUTPUT SIGNALS

Signals can be output through the connector labeled AUX OUT on your oscilloscope. Use the Auxiliary Output to send the following signals to other instruments:

• **Trigger Enabled** - This function can be used as a gating function to trigger another instrument when the oscilloscope is ready.

• **Trigger Out** - This function can be used to trigger an external oscilloscope.

 Pass/Fail - Allows you to set a pulse duration (durations vary based on your specific model, refer to datasheet specifications at <u>www.lecroy.com</u> for details); generates a pulse when pass/fail testing is active and conditions are met.

• Fast Edge - Some models provide this signal output used to deskew multiple channels. The Fast Edge connection varies based on model and is either SMA or BNC.

Off - This function turns off the Auxiliary Output signal.

CALIBRATION OUTPUT SIGNALS

A calibration signal can be output from the Probe Calibration Hook on the front of the oscilloscope. The following Calibration Output Signals are available for use:

 Square Wave - You can set a Frequency value (frequency ranges vary based on your specific model, refer to datasheet specifications at <u>www.lecroy.com</u> for details).

• **DC Level** - This is a reference level.

• **Off** - This function turns off the Calibration Output signal.

Date and Time

From the **Date and Time** tab on the **Utilities** dialog, you can manually set the time and date or get it from the Internet. If you elect to get the date and time from the Internet, you need to have the oscilloscope connected to the Internet through the LAN connector on your instrument's I/O panel. You can also set time zones and daylight savings time.

- 1. You can set the Date and Time manually by providing a value in the Hour, Minute, Second, Day, Month, and Year using your preferred input control method for more information regarding the touch screen controls, refer to Dialog Area (on page 46). After providing values, touch the Validate Changes button.
- 2. You can **set the Date and Time from the Internet** by first verifying that your oscilloscope is connected to the Internet, and then touching the **Set from Internet** button.

Note: The Simple Network Time Protocol (SNTP) is used.

3. You can also set the Date and Time using Windows[®] by touching the Windows Date/Time button.

Windows shows a **Date and Time Properties** pop-up where the date and time can be configured.

🔐 Date and Time
Date and Time Additional Clocks
Date: Tuesday, June 17, 2008 Time: 10:03:48 AM
Time zone
(GMT-05:00) Eastern Time (US & Canada)
Change time zone
Daylight Saving Time ends on Sunday, November 02, 2008 at 2:00 AM. The clock is set to go back 1 hour at this time.
Remind me one week before this change occurs
How do I set the clock and time zone?
OK Cancel Apply

Options

The **Options** dialog is used to add or remove software options. Contact LeCroy for more information using **Contact LeCroy for Support** (on page 188), or visit our Website at <u>www.lecroy.com/options</u>.

This dialog also shows your **ScopeID** and **Serial #**.

Disk Utilities

Use the Disk Utilities dialog to arrange the file/folder structure on your instrument's hard drive. You can delete files, folders, or create new folders.

Note: All Disk Utilities can also be accomplished using the standard Microsoft Windows[®] file management tools.

Access the **Disk Utilities** dialog by selecting **Utilities** \rightarrow **Disk Utilities** from the menu bar.

- 1. **Delete a single file** by first touching the **Delete** button on the dialog (just to make sure it's selected).
 - Now, touch inside the Current folder data entry control and provide the path to the folder containing the file for deletion.

OR

Touch the **Browse** button and navigate to the folder.

 Touch inside the File to be deleted data entry control and provide a file name using your preferred input control method - for more information regarding the touch screen controls, refer to Dialog Area (on page 46).

OR

Touch the Browse button and navigate to the file.

Note: You can also use the **up down arrows** to move through the files contained in the **Current folder** selected.

With the desired file for deletion located, touch the **Delete File** button.

 Delete all files in a folder by repeating the aforementioned Delete a single file process (up to the first bullet only using the Current Folder control).

With the desired folder for deletion located, touch the **Empty Folder** button.

- 3. **Create a Folder** by first touching the **Create** button on the dialog (just to make sure it's selected).
 - Touch inside the **Current folder** data entry control and provide the path for folder creation and **be sure to include the folder name**.

• Now, touch the Create Folder button.

Note: Disk Space data for Size, Free, and File(s) is available on the far right of the dialog for convenience.

Preferences

Preference Setup Overview

A variety of customizable preferences can be set on your instrument. Access Preferences by touching **Utilities** \rightarrow **Preference Setup...** on the menu bar. The main **Preferences** dialog is shown.

Preferences	Acquisition	E-Mail	Color	Miscellaneous																																																					
Audible Fee	lback		Automati	c Calibration																								F	Per	rfor	rm	na	and	се																							
																																												Dp	im	ize	F	or:									
🛃 Enable			🛃 Er	able																									Ana	alys	sis	s						ľ	ł,	•		4	4		4	6			1		Ţ		D	Dis	pl	ay	
Enables aud feedback of Screen Activi	Touch-			automatic tion based on rature.																								I	If Ac	lisp cqu lect	uis	sit	tio	'n	an	ıd/																					

The following sections cover the **Preferences**, Acquisition, E-Mail, Color, and Miscellaneous dialogs.

Preferences

Selecting **Utilities** → **Preference Setup...** shows the main **Preferences** dialog by default. The following controls are available from this dialog:

Numbered sections on this dialog correspond with the following explanations.

 You can choose to have audible confirmation each time you touch a screen or front panel control by marking the **Enable** checkbox on the **Audible Feedback** section of the dialog. With Audible Feedback enabled, the oscilloscope beeps each time you touch the screen or a front panel control.

 You can choose to have your instrument automatically re-calibrate itself whenever there is a significant change in ambient temperature by marking the Enable checkbox on the Automatic Calibration section of the dialog.

Note: If you do not enable this option, the oscilloscope recalibrates only at startup and whenever you make a change to certain operating conditions.

 If the option is available on your oscilloscope, you can set up the oscilloscope to optimize either Analysis (acquisition and calculation speed) or Display (update rate/speed) using the buttons provided on the Optimize For section of the dialog.

Available choices are presented as a spectrum with highest values at **Analysis** and **Display** extremes.

Select one of the buttons for the desired performance optimization.

An example reasoning for Analysis optimization would be its persistence or averaging usefulness. In such a case, giving higher priority to waveform acquisition at the expense of display update rate makes practical sense.

Acquisition

Access the Acquisition preference settings in the following manner:

The Acquisition dialog. The Trigger Counter Setting checkbox is not available on all models.

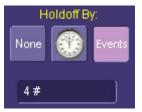
Numbered sections on this dialog correspond with the following explanations.

1. On the **Offset Setting constant in** area of the dialog, touch either the **Div** or **Volts** button.

As you change the gain, this control allows you to either keep the vertical offset level indicator stationary (when **Div** is selected) or to have it move with the actual voltage level (when **Volts** is selected). The advantage of selecting **Div** is that the waveform remains on the grid as you increase the gain; whereas, if **Volts** is selected, the waveform could move off the grid.

Note: Regardless of whether you select **Volts** or **Div**, the **Offset** shown in the channel setup dialog always indicates volts. However, when **Div** is selected for the Offset Control, the offset in volts is scaled proportional to the change in gain, thereby keeping the division on the grid constant.

2. On the **Delay Setting constant in** area of the dialog, touch either the **Time** or **Div** button.


As you change the timebase, this control allows you to either keep the horizontal offset indicator stationary (when **Div** is selected) or to have it move with the trigger point (when **Time** is selected).

The advantage of selecting **Div** is that the trigger point remains on the grid as you increase the timebase; whereas, if **Time** is selected, the trigger point could move off the grid.

Note: Regardless of whether you select **Time** or **Div**, the **Delay** shown in the timebase setup dialog always indicates time. However, when **Div** is selected for Delay In, the delay in time is scaled proportional to the change in timebase, thereby keeping the division on the grid constant.

3. If this checkbox control is available on your oscilloscope, you can mark the **Reset trigger counter before starting a new acquisition** checkbox on the **Trigger Counter Setting** area of the dialog.

This preference clears the trigger counter each time the oscilloscope issues an arm acquisition command and applies when you have set a trigger Holdoff condition in the Trigger dialog in either time or events:

The default condition of this control is off (unchecked).

Acquisition Status

For each general category of oscilloscope operation, you can view a summary of your setups. Access these status dialogs by making the following menu bar selections:

- Vertical → Channels Status
- Timebase → Acquisition Status
- Trigger → Acquisition Status
- Math → Math Status, Zoom Status, or Memory Status

In addition to these dialogs, summaries are also provided for XY setups, memory (M1-M4) setups, and time stamps for sequence mode sampling.

E-Mail

Before you can send e-mail from the oscilloscope, configurations must be made on this dialog.

Numbered sections on this dialog correspond with the following explanations.

1. On the **E-Mail Server** section of the dialog, choose a server protocol from the following options:

- MAPI (Messaging Application Programming Interface) is the Microsoft interface specification that allows different messaging and workgroup applications (including e-mail, voice mail, and fax) to work through a single client, such as the Exchange client . MAPI uses the default Windows e-mail application.
- **SMTP** (Simple Mail Transfer Protocol) is a TCP/IP protocol for sending messages from one computer to another through a network. This protocol is used on the Internet to route e-mail. In many cases no account is needed.
- Provide values on controls for SMTP Server, Originator Address (From:), and Default Recipient Address (To:) on the Configuration section of the dialog based the MAPI or SMTP choice during the previous step.
 - If you chose MAPI, touch inside the Originator Address (From:) data entry field and provide the instrument's e-mail address. Then touch inside the Default Recipient Address (To:) data entry field and provide the recipient's e-mail address.
 - If you chose SMTP, touch inside the SMTP Server data entry field and provide the name of your server. Touch inside the Originator Address (From:) data entry field and provide the instrument's e-mail address. Then touch inside the Default Recipient Address (To:) data entry field and provide the recipient's e-mail address.
- 3. The **Overview of E-Mail modes** section of the dialog provides helpful descriptions for your Server selection (made during the first step in this topic).
- 4. Use the **Send Test Mail** button to ensure proper E-Mail configuration by way of sending a confirmation message.

Color

You can customize the Colors used for **Channels**, **Math**, and **Memory** traces both when shown on your instrument and when used in print output.

Note: These color settings match a waveform on the grid display (both on-screen and printed) and show consistently on corresponding **dialogs, tables,** and **trace descriptor labels**.

Numbered sections on this dialog correspond with the following explanations.

- 1. Make color selections for **Channels** (Screen and Print) by touching one of the color swatches. The Color pop-up control is shown and may be used to specify your desired color.
- 2. Just like Channels, make color selections for **Math Traces** (Screen and Print) by touching one of the color swatches. The Color pop-up control is shown and may be used to specify your desired color.
- Again, just like Channels, make color selections for Memory Traces (Screen and Print) by touching one of the color swatches. The Color pop-up control is shown and may be used to specify your desired color.
- 4. You can use the **Factory default colors** button to instantly recall the original color settings for your instrument.

Note: Print colors are used only when the Colors control is set to Print on the Hardcopy dialog in **Utilities** \rightarrow **Utilities Setup...** allowing colors to still appear when printed on white paper in order to save ink/toner. For convenience, the **Preview print colors** button is provided on this portion of the dialog. When the button is touched, a preview is generated on the grid display area. A subsequent touch of the button closes the preview.

Miscellaneous

Other Preference setting controls are shown on the Miscellaneous dialog as follows:

Numbered sections on this dialog correspond with the following explanations.

- You can add the LeCroy Logo to hardcopies of your grid display waveforms by marking the Print LeCroy Logo When Printing Grid Area Only checkbox on the Hardcopy section of the dialog.
- 2. You can adjust the **Dimming** and **Control Sensitivity** of **Zoom** traces as follows:
- Use the **Dimming** control to choose select **On**, **Off**, and **Auto** values. This controls the darkening/shading of waveform areas not part of the Zoom trace.
- Use Control Sensitivity to choose Legacy or Optimized values
- 3. If you have **Serial Data Debug Solutions** installed on your oscilloscope, you can control Annotations being put **On Trace** (on all traces) or **On Noisy Trace** (only on noisy traces).
- 4. You can shut off the SuperKnob Help flyout menu by un-marking the **SuperKnob Help** checkbox on the **Other** section of the dialog.

System Recovery Tool

Restoring Software Using the Acronis Application

Your oscilloscope is designed to operate reliably for many years. The application software operating the instrument runs on a Windows platform. The loading or incomplete removal of additional Windows applications can cause problems in the stability of the operating system. Severe cases may require a reloading of the base operating system and oscilloscope application.

LeCroy provides you with an Acronis recovery application and a backup image in an extra partition on the instrument's hard drive.

PLEASE NOTE THE FOLLOWING:

- The recovery process produces a replica of the operating system and oscilloscope application software at the current revision levels when the oscilloscope was manufactured. Any further revisions of the application software, Windows operating system, and virus scan definition files are not automatically upgraded. Therefore, after completion of the disk image recovery, it is highly recommended to search vendor Web sites and upgrade the individual components to current revision levels.
- After the recovery procedure is completed, you must activate Windows, either by Internet connection to Microsoft's Web site or by telephone. Have your Windows Product Key number (shown on a sticker on your oscilloscope) handy during Widows reactivation.
- The current oscilloscope application software can be downloaded directly from the LeCroy website at <u>www.lecroy.com</u>. Since the calibration data for the oscilloscope is stored in the D: drive, current calibration constants are not overwritten during the recovery process.

Since third-party recovery software is used, our instructions certainly may not be the most definitive or current. We advise you to take advantage of resources available on the **Acronis** website - they maintain versions of their product manuals from the following locations:

Acronis True Image Home

http://www.acronis.com/homecomputing/download/docs/

Acronis True Image Echo Workstation

http://www.acronis.com/backup-recovery/advancedworkstation/index.html

Note: The following procedures cover basic steps for running the **True Image Echo Workstation**. For more definitive documentation refer to their aforementioned documentation resources. LeCroy provides you with a recovery application and a backup image in an extra partition on the instrument's hard drive. The recovery process is easy to perform, using the Recovery Wizard. After the recovery procedure is done, you must activate Windows, either by Internet connection to Microsoft's Web site or by telephone. Have your Windows Product Key number (located on the rear of the oscilloscope) handy during Widows reactivation.

Running the Acronis True Image Echo Workstation Recovery Application

- 1. Connect a network cable to the LAN port on the rear of the oscilloscope if you intend to activate windows through the Internet.
- 2. Connect a keyboard and a mouse to the oscilloscope.
- 3. Apply power to the oscilloscope.
- As soon as the Starting Acronis Loader... Press F11 for Acronis Startup Recovery Manager message appears on the screen, press the F11 key until the recovery software logo appears momentarily. The Acronis True Image Echo Workstation main window is displayed.

Note: Do not press **F11** before you see the **Starting Acronis Loader** message or you will enter the MB boot sequence selection.

- 5. Select **Recovery** from the **Main Menu**. The **Restore Data Wizard** opens.
- 6. Click **Next** on the **Welcome** page.
- On the Backup Archive Selection page, you choose the zone where the recovery partition is located. Choose Acronis Secure Zone (this is where the recovery data is located on your oscilloscope) and click Next.
- On the Backup Date Selection page, choose the date when the backup was created and to which state you want to revert your system and click Next.
- 9. On the **Restoration Type Selection** page, select **Restore disks or partitions** and click **Next**.

- 10. On the **Partition or Disk to Restore** page, select **SYSTEM (C:)** as the source and click **Next**.
- 11. On the **Restored Partition Type** page, select **Active** and click **Next**.

Note: If a window appears asking if you want to buy Acronis products, click **Do not show this message again** and click **OK**.

- 12. The **Restored Partition Size** page displays the Partition size for the restoration. Nothing needs to be changed, simply click **Next**.
- 13. On the **Next Selection** page, you will be asked if you want to restore another partition or hard disk drive. Select **No, I do not** and click **Next**.
- 14. The **Restoration Options** page displays additional options, such as what to do after the restoration is complete and error handling. Simply click **Next** to use the default selections.
- 15. A summary window is displayed indicating that Acronis True Image is ready to proceed with the recovery of the C: partition. Click **Proceed** to start the recovery process.

Note: This takes approximately 4 to 15 minutes depending on the version of Operating system that is being restored. The progress is displayed on the screen

- Once the restoration is complete, an Information window is displayed indicating that the Data was successfully restored. Click OK.
- Click Operations → Exit. The oscilloscope will restart and begin installing the required software. A message is displayed asking if you want to install Microsoft Office PowerPoint Viewer.
- 18. Click **Yes** to install PowerPoint Viewer. The **InsallShield Wizard** for Adobe Flash Player opens.
- 19. To install Adobe Flash Player, click **Install** and then **Finish**. The X-Stream software installer screen appears.
- 20. Click **Next** to continue. The License Agreement page is displayed.
- 21. Click I Agree. The Choose Components page is displayed.
- 22. Select all X-Stream components and click Install.

Note: A Windows Security window may be displayed indicating that Windows can't verify the publisher of this driver software. Choose Install this driver software anyway and then click Install.

23. When the X-Stream installation is completed, reboot the oscilloscope.

Note: Now you must activate Windows[®] using an Internet connection to the Microsoft Web site or by telephone. When activating, have the Windows Product Key number handy (it is affixed to the rear of the oscilloscope).

Restarting the Application

Upon initial power-up, the oscilloscope automatically loads the instrument application software. If you exit the application and want to reload it, touch the **shortcut icon** on the desktop:

Note: If you minimize the application, touch the appropriate task bar or desktop icon to maximize it:

Restarting the Operating System

If you need to restart the Windows[®] operating system, reboot the oscilloscope by pressing and holding in the power switch for 10 seconds, then turning the power on again.

Reference

WaveRunner 6 Zi Specifications

Note: Specifications are subject to change without notice.

Please refer to the LeCroy website at <u>www.lecroy.com</u> or the online help on your LeCroy oscilloscope for detailed specification information.

CERTIFICATIONS

CE Compliant, UL, and cUL Listed

CE Declaration of Conformity

The oscilloscope meets requirements of EMC Directive 2004/108/EEC for Electromagnetic Compatibility and Low Voltage Directive 2006/95/EEC for Product Safety.

EMC Directive

- EN 61326-1:2006
- EMC requirements for electrical equipment for measurement, control, and laboratory use.

ELECTROMAGNETIC EMISSIONS:

- EN 55011/A2:2002, Radiated and conducted emissions (Class A)*
- EN 61000-3-2:2006 Harmonic Current Emissions (Class A)
- EN 61000-3-3/A2:2005 Voltage Fluctuations and Flickers (Pst = 1)

ELECTROMAGNETIC IMMUNITY:

- EN 61000-4-2:2001** Electrostatic Discharge.
 - (4 kV contact, 8 kV air, 4 kV vertical/horizontal coupling planes)
- EN 61000-4-3:2006** RF Radiated Electromagnetic Field.

(3 V/m, 80-1000 MHz; 3 V/m, 1400 MHz - 2 GHz; 1 V/m, 2 GHz - 2.7 GHz)

• EN 61000-4-4:2004** Electrical Fast Transient/Burst.

(1 kV on power supply lines, 0.5 kV on I/O signal data and control lines)

- EN 61000-4-5:2006** Surges.
 (1 kV AC Mains, L-N, L-PE, N-PE)
- EN 61000-4-6:2007** RF Conducted Electromagnetic Field.
 (3 Vrms, 0.15 MHz 80 MHz)
- EN 61000-4-11:2004⁺ Mains Dips and Interruptions.

(1 cycle voltage dip, 100% short interruption)

* In order to conform to Radiated Emissions standards, use properly shielded cables on all I/O terminals.

** Meets Performance Criteria "B" limits during the disturbance; product undergoes a temporary degradation or loss of function of performance which is self recoverable.

⁺ Meets Performance Criteria "C" limits during the disturbance; product undergoes a temporary degradation or loss of function of performance which requires operator intervention or system reset.

This is a Class A product. In a domestic environment this product may cause radio interference, in which case the user may be required to take appropriate measures.

Low-Voltage Directive

EN 61010-1:2001

Safety requirements for electrical equipment for measurement, control, and laboratory use.

The oscilloscope has been qualified to the following EN 61010-1 limits:

- Installation Categories II (Mains Supply Connector) and I (Measuring Terminals).
- Pollution Degree 2 (Normally only dry non-conductive pollution occurs. Occasionally a temporary conductivity caused by condensation must be expected.)

• Protection Class I (Provided with terminal for protective ground).

UL and cUL

The oscilloscope is UL and cUL listed and conforms to the following standards:

- UL Standard: UL 61010-1 2nd Edition.
- Canadian Standard: CSA-C22.2 No. 61010-1-04.

Contact LeCroy for Support

Use the following regional contacts to find the appropriate support location nearest you.

Whether you're looking for sales or technical support, our staff can provide assistance with installation, calibration, and product knowledge regarding a full-range of our software applications and accessories.

You can also find contact information for our offices on the LeCroy Web sites shown for the following regions:

Contact Your Local LeCro	by Office for Sales and Technical Assistance												
United States and C	United States and Canada - World Wide Corporate Office												
	LeCroy Corporation												
	700 Chestnut Ridge Road												
Che	estnut Ridge, NY, 10977-6499												
Phone (Sales, Applications	a, and Service) : 800-553-2769 (options 1, 2, and 3, pectively) or 845-425-2000												
	lications, and Service): 845-578-5985												
. ,	, ,												
. ,	ons, and Service): contact.corp@lecroy.com												
W	eb Site: <u>www.lecroy.com</u>												
United States - Protocol	European Headquarters												
Solutions Group	LeCroy Europe												
LeCroy Corporation	4, Rue Moïse Marcinhes												
3385 Scott Boulevard	Case postale 341												
Santa Clara, CA, 95054	1217 Meyrin 1												
Phone (Sales and Service): 800-	Geneva												
909-7211 or 408-727-6600	Phone (Sales, Service, and Support): + 41 22 719												
Phone (Support): 800-909-	2228, +41 22 719 23 23, and +41 22 719 22 77 use												
7112 or 408-653-1260	+44(1276)503 971 for Protocol Analyzers												
Fax (Sales, Service, and	Fax (Sales and Service): +41 22 719 22 33												
Support): 408-727-0800	Email (Sales, Service, and Support):												
Email (Sales and Service):	<pre>contact.sa@lecroy.com, samir.shafik@lecroy.com,</pre>												
<u>contact.corp@lecroy.com</u>	and applications.indirect@lecroy.com												
Email (Support):	Web Site: <u>http://www.lecroy.com/europe</u>												

Contact Your Local LeCro	y Office for Sales and Technical Assistance
psgsupport@lecroy.com Web Site: <u>www.lecroy.com</u>	
China	Korea - Seoul
LeCroy Corporation Beijing Office and Service Center	LeCroy Korea 10th fl.Ildong Bldg.
Rm. 2001 - Office; Rm. 2002 - Service Center	968-5 Daechi-dong, Gangnam-gu Seoul 135-280, Korea
Unit A, Horizon Plaza	Phone (Sales and Support): ++ 82 2 3452 0400
No. 6, Zhichun Road, Haidian District	Fax (Sales and Support): ++ 82 2 3452 0490
Beijing 100088, China	Web Site: <u>http://www.lecroy.co.kr</u>
Phone: ++86 10 8280 0318 / 0319 / 0320	
Phone Service : ++86 10 8280 0245	
Fax (Sales and Support): +86 10 8280 0316	
Web Site: <u>http://www.lecroy.com.cn</u>	
Singapore (Oscilloscopes)	Singapore (Protocol Analyzers)
LeCroy Singapore Pte Ltd	Genetron Singapore Pte Ltd
Blk 750C Chai Chee Road #02-08	37 Kallang Pudding Road, #08-08
Technopark@ Chai Chee	Tong Lee Building Block B
Singapore 469003	Singapore 349315
Phone (Sales and Support): ++ 65 64424880	Phone (Sales and Support): ++ 65 9760-4682
Fax (Sales and Support): ++ 65 64427811	
Taiwan	Токуо
LeColn Technology Co Ltd	LeCroy Japan
Far East Century Park, C3, 9F,	Hobunsya Funchu Bldg, 3F

Getting Started Manual

End-User License Agreement for LeCroy[®] X-Stream Software

IMPORTANT-READ CAREFULLY: THIS END-USER LICENSE AGREEMENT ("EULA") IS A LEGAL AGREEMENT BETWEEN THE INDIVIDUAL OR ENTITY LICENSING THE SOFTWARE PRODUCT ("YOU" OR "YOUR") AND LECROY CORPORATION ("LECROY") FOR THE SOFTWARE PRODUCT(S) ACCOMPANYING THIS EULA, WHICH INCLUDE(S): COMPUTER PROGRAMS: ANY "ONLINE" OR ELECTRONIC DOCUMENTATION AND PRINTED MATERIALS PROVIDED BY LECROY HEREWITH ("DOCUMENTATION"); ASSOCIATED MEDIA; AND ANY UPDATES (AS DEFINED BELOW) (COLLECTIVELY, THE "SOFTWARE PRODUCT"). BY USING AN INSTRUMENT TOGETHER WITH OR CONTAINING THE SOFTWARE PRODUCT, OR BY INSTALLING, COPYING, OR OTHERWISE USING THE SOFTWARE PRODUCT, IN WHOLE OR IN PART, YOU AGREE TO BE BOUND BY THE TERMS OF THIS EULA. IF YOU DO NOT AGREE TO THE TERMS OF THIS EULA, DO NOT INSTALL, COPY, OR OTHERWISE USE THE SOFTWARE PRODUCT: YOU MAY RETURN THE SOFTWARE PRODUCT TO YOUR PLACE OF PURCHASE FOR A FULL REFUND.

IN ADDITION, BY INSTALLING, COPYING, OR OTHERWISE USING ANY MODIFICATIONS, ENHANCEMENTS, NEW VERSIONS, BUG FIXES, OR OTHER COMPONENTS OF THE SOFTWARE PRODUCT THAT LECROY PROVIDES TO YOU SEPARATELY AS PART OF THE SOFTWARE PRODUCT ("UPDATES"), YOU AGREE TO BE BOUND BY ANY ADDITIONAL LICENSE TERMS THAT ACCOMPANY SUCH UPDATES. IF YOU DO NOT AGREE TO SUCH ADDITIONAL LICENSE TERMS, YOU MAY NOT INSTALL, COPY, OR OTHERWISE USE SUCH UPDATES.

THE PARTIES CONFIRM THAT THIS AGREEMENT AND ALL RELATED DOCUMENTATION ARE AND WILL BE DRAFTED IN ENGLISH. LES PARTIES AUX PRÉSENTÉS CONFIRMENT LEUR VOLONTÉ QUE CETTE CONVENTION DE MÊME QUE TOUS LES DOCUMENTS Y COMPRIS TOUT AVIS QUI S'Y RATTACHÉ, SOIENT REDIGÉS EN LANGUE ANGLAISE.

1. GRANT OF LICENSE.

1.1. License Grant. Subject to the terms and conditions of this EULA and payment of all applicable fees, LeCroy grants to you a nonexclusive, nontransferable license (the "License") to: (a) operate the Software Product as provided or installed, in object code form, for your own internal business purposes, (i) for use in or with an instrument provided or manufactured by LeCroy (an "Instrument"), (ii) for testing your software product(s) (to be used solely by you) that are designed to operate in conjunction with an Instrument ("Your Software"), and (iii) make one copy for archival and back-up purposes; (b) make and use copies of the Documentation; provided that such copies will be used only in connection with your licensed use of the Software Product, and such copies may not be republished or distributed (either in hard copy or electronic form) to any third party; and (c) copy, modify, enhance and prepare derivative works ("Derivatives") of the source code version of those portions of the Software Product set forth in and identified in the Documentation as "Samples" ("Sample Code") for the sole purposes of designing, developing, and testing Your Software.

If you are an entity, only one designated individual within your organization, as designated by you, may exercise the License; provided that additional individuals within your organization may assist with respect to reproducing and distributing Sample Code as permitted under Section 1.1(c)(ii). LeCroy reserves all rights not expressly granted to you. No license is granted hereunder for any use other than that specified herein, and no license is granted for any use in combination or in connection with other products or services (other than Instruments and Your Software) without the express prior written consent of LeCroy. The Software Product is licensed as a single product. Its component parts may not be separated for use by more than one user. This EULA does not grant you any rights in connection with any trademarks or service marks of LeCroy. The Software Product is protected by copyright laws and international copyright treaties, as well as other intellectual property laws and treaties. The Software Product is licensed, not sold. The terms of this printed, paper EULA supersede the terms of any on-screen license agreement found within the Software Product.

1.2. **Upgrades**. If the Software Product is labeled as an "upgrade," (or other similar designation) the License will not take effect, and you will have no right to use or access the Software Product unless you are properly licensed to use a product identified by LeCroy as being eligible for the upgrade ("Underlying Product"). A Software Product labeled as an "upgrade" replaces and/or supplements the Underlying Product. You may use the resulting upgraded product only in accordance with the terms of this EULA. If the Software Product is an upgrade of a component of a package of software programs that you licensed as a single product, the Software Product may be used and transferred only as part of that single product package and may not be separated for use on more than one computer.

1.3. Limitations. Except as specifically permitted in this EULA, you will not directly or indirectly (a) use any Confidential Information to create any software or documentation that is similar to any of the Software Product or Documentation; (b) encumber, transfer, rent. lease, time-share or use the Software Product in any service bureau arrangement; (c) copy (except for archival purposes), distribute, manufacture, adapt, create derivative works of, translate, localize, port or otherwise modify the Software Product or the Documentation; (d) permit access to the Software Product by any party developing, marketing or planning to develop or market any product having functionality similar to or competitive with the Software Product; (e) publish benchmark results relating to the Software Product, nor disclose Software Product features, errors or bugs to third parties; or (f) permit any third party to engage in any of the acts proscribed in clauses (a) through (e). In jurisdictions in which transfer is permitted, notwithstanding the foregoing prohibition, transfers will only be effective if you transfer a copy of this EULA, as well as all copies of the Software Product, whereupon your right to use the Software product will terminate. Except as described in this Section 1.3, You are not permitted (i) to decompile, disassemble, reverse compile, reverse assemble, reverse translate or otherwise reverse engineer the Software Product, (ii) to use any similar means to discover the source code of the Software Product or to discover the trade secrets in the Software Product, or (iii) to otherwise circumvent any technological measure that controls access to the Software Product. You may reverse engineer or otherwise circumvent the technological measures protecting the Software Product for the sole purpose of identifying and analyzing those elements that are necessary to achieve Interoperability (the "Permitted Objective") only if: (A) doing so is necessary to achieve the Permitted Objective and it does not constitute infringement under Title 17 of the United States Code; (B) such circumvention is confined to those parts of the Software Product and to such acts as are necessary to achieve the Permitted Objective; (C) the information to be gained thereby has not already been made readily available

to you or has not been provided by LeCroy within a reasonable time after a written request by you to LeCroy to provide such information; (D) the information gained is not used for any purpose other than the Permitted Objective and is not disclosed to any other person except as may be necessary to achieve the Permitted Objective; and (E) the information obtained is not used (1) to create a computer program substantially similar in its expression to the Software Product including, but not limited to, expressions of the Software Product in other computer languages, or (2) for any other act restricted by LeCroy's intellectual property rights in the Software Product. "Interoperability" will have the same meaning in this EULA as defined in the Digital Millennium Copyright Act, 17 U.S.C. §1201(f), the ability of computer programs to exchange information and of such programs mutually to use the information which has been exchanged.

1.4. **PRERELEASE CODE**. Portions of the Software Product may be identified as prerelease code ("Prerelease Code"). Prerelease Code is not at the level of performance and compatibility of the final, generally available product offering. The Prerelease Code may not operate correctly and may be substantially modified prior to first commercial shipment. LeCroy is not obligated to make this or any later version of the Prerelease Code commercially available. The License with respect to the Prerelease Code terminates upon availability of a commercial release of the Prerelease Code from LeCroy.

2. SUPPORT SERVICES.

At LeCroy's sole discretion, from time to time, LeCroy may provide Updates to the Software Product. LeCroy shall have no obligation to revise or update the Software Product or to support any version of the Software Product. At LeCroy's sole discretion, upon your request, LeCroy may provide you with support services related to the Software Product ("Support Services") pursuant to the LeCroy policies and programs described in the Documentation or otherwise then in effect, and such Support Services will be subject to LeCroy's then-current fees therefor, if any. Any Update or

other supplemental software code provided to you pursuant to the Support Services will be considered part of the Software Product and will be subject to the terms and conditions of this EULA. LeCroy may use any technical information you provide to LeCroy during LeCroy's provision of Support Services, for LeCroy's business purposes, including for product support and development. LeCroy will not utilize such technical information in a form that personally identifies you.

3. PROPRIETARY RIGHTS.

3.1. **Right and Title**. All right, title and interest in and to the Software Product and Documentation (including but not limited to any intellectual property or other proprietary rights, images, icons, photographs, text, and "applets" embodied in or incorporated into the Software Product, collectively, "Content"), and all Derivatives, and any copies thereof are owned by LeCroy and/or its licensors or third-party suppliers, and is protected by applicable copyright or other intellectual property laws and treaties. You will not take any action inconsistent with such title and ownership. This EULA grants you no rights to use such Content outside of the proper exercise of the license granted hereunder, and LeCroy will not be responsible or liable therefor.

3.2. **Intellectual Property Protection**. You may not alter or remove any printed or on-screen copyright, trade secret, proprietary or other legal notices contained on or in copies of the Software Product or Documentation.

3.3. **Confidentiality**. Except for the specific rights granted by this EULA, neither party shall use or disclose any Confidential Information (as defined below) of the other party without the written consent of the disclosing party. A party receiving Confidential Information from the other shall use the highest commercially reasonable degree of care to protect the Confidential Information, including ensuring that its employees and consultants with access to such Confidential Information have agreed in writing not to disclose the Confidential Information.

Getting Started Manual

You shall bear the responsibility for any breaches of confidentiality by your employees and consultants. Within ten (10) days after request of the disclosing party, and in the disclosing party's sole discretion, the receiving party shall either return to the disclosing party originals and copies of any Confidential Information and all information, records and materials developed therefrom by the receiving party, or destroy the same, other than such Confidential Information as to which this EULA expressly provides a continuing right to the receiving party to retain at the time of the request. Either party may only disclose the general nature, but not the specific financial terms, of this EULA without the prior consent of the other party; provided either party may provide a copy of this EULA to any finance provider in conjunction with a financing transaction, if such provider agrees to keep this EULA confidential. Nothing herein shall prevent a receiving party from disclosing all or part of the Confidential Information as necessary pursuant to the lawful requirement of a governmental agency or when disclosure is required by operation of law; provided that prior to any such disclosure, the receiving party shall use reasonable efforts to (a) promptly notify the disclosing party in writing of such requirement to disclose, and (b) cooperate fully with the disclosing party in protecting against any such disclosure or obtaining a protective order. Money damages will not be an adequate remedy if this Section 4.3 is breached and, therefore, either party shall, in addition to any other legal or equitable remedies, be entitled to seek an injunction or similar equitable relief against such breach or threatened breach without the necessity of posting any bond. As used herein, "Confidential Information" means LeCroy pricing or information concerning new LeCroy products, trade secrets (including without limitation all internal header information contained in or created by the Software Product, all benchmark and performance test results and all Documentation) and other proprietary information of LeCroy; and any business, marketing or technical information disclosed by LeCroy, or its representatives, or you in relation to this EULA, and either (i) disclosed in writing and marked as confidential at the

time of disclosure or (ii) disclosed in any other manner such that a reasonable person would understand the nature and confidentiality of the information. Confidential Information does not include information (A) already in the possession of the receiving party without an obligation of confidentiality to the disclosing party, (B) hereafter rightfully furnished to the receiving party by a third party without a breach of any separate nondisclosure obligation to the disclosing party, (C) publicly known without breach of this EULA, (d) furnished by the disclosing party to a third party without restriction on subsequent disclosure, or (e) independently developed by the receiving party without reference to or reliance on the Confidential Information.

4. TERMINATION.

This EULA will remain in force until termination pursuant to the terms hereof. You may terminate this EULA at any time. This EULA will also terminate if you breach any of the terms or conditions of this EULA. You agree that if this EULA terminates for any reason, the License will immediately terminate and you will destroy all copies of the Software Product (and all Derivatives), installed or otherwise, the Documentation, and the Confidential Information (and all derivatives of any of the foregoing) that are in your possession or under your control. The provisions of Sections 1.3, 4, 6, 7, 8, and 9 will survive any termination or expiration hereof.

5. U.S. GOVERNMENT RESTRICTED RIGHTS.

If any Software Product or Documentation is acquired by or on behalf of a unit or agency of the United States Government (any such unit or agency, the "Government"), the Government agrees that the Software Product or Documentation is "commercial computer software" or "commercial computer software documentation" and that, absent a written agreement to the contrary, the Government's rights with respect to the Software Product or Documentation are, in the case of civilian agency use, Restricted Rights, as defined in FAR §52.227.19, and if for Department of Defense use, limited by the terms of this EULA, pursuant to DFARS §227.7202. The use of the Software Product or Documentation by the Government constitutes acknowledgment of LeCroy's proprietary rights in the Software Product and Documentation. Manufacturer is LeCroy Corporation, 700 Chestnut Ridge Road, Chestnut Ridge, NY 10977 USA.

6. **EXPORT RESTRICTIONS**.

You agree that you will not export or re-export the Software Product, any part thereof, or any process or service that is the direct product of the Software Product (the foregoing collectively referred to as the "Restricted Components"), to any country, person, entity or end user subject to U.S. export restrictions. You specifically agree not to export or re-export any of the Restricted Components (a) to any country to which the U.S. has embargoed or restricted the export of goods or services, which currently include, but are not necessarily limited to Cuba, Iran, Irag, Libya, North Korea, Sudan and Syria, or to any national of any such country, wherever located, who intends to transmit or transport the Restricted Components back to such country; (b) to any end user who you know or have reason to know will utilize the Restricted Components in the design, development or production of nuclear, chemical or biological weapons; or (c) to any end-user who has been prohibited from participating in U.S. export transactions by any federal agency of the U.S. government. You warrant and represent that neither the BXA nor any other U.S. federal agency has suspended, revoked or denied your export privileges. It is your responsibility to comply with the latest United States export regulations, and you will defend and indemnify LeCroy from and against any damages, fines, penalties, assessments, liabilities, costs and expenses (including reasonable attorneys' fees and court costs) arising out of any claim that the Software Product, Documentation, or other information or materials provided by LeCroy hereunder were exported or otherwise accessed, shipped or transported in violation of applicable laws and regulations.

7. RISK ALLOCATION.

7.1. No Warranty. THE SOFTWARE PRODUCT IS NOT ERROR-FREE AND THE SOFTWARE PRODUCT AND SUPPORT SERVICES IS/ARE BEING PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. LECROY, FOR ITSELF AND ITS SUPPLIERS, HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED, ORAL OR WRITTEN. WITH RESPECT TO THE SOFTWARE PRODUCT OR ANY SUPPORT SERVICES INCLUDING, WITHOUT LIMITATION, ALL IMPLIED WARRANTIES OF TITLE OR NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY, INTEGRATION, VALIDITY, EXCLUSIVITY, MERCHANTABILITY, NON-INTERFERENCE WITH ENJOYMENT, FITNESS FOR ANY PARTICULAR PURPOSE, AND ALL WARRANTIES IMPLIED FROM ANY COURSE OF DEALING OR USAGE OF TRADE. YOU ACKNOWLEDGE THAT NO WARRANTIES HAVE BEEN MADE TO YOU BY OR ON BEHALF OF LECROY OR OTHERWISE FORM THE BASIS FOR THE BARGAIN BETWEEN THE PARTIES.

7.2. Limitation of Liability. LECROY'S LIABILITY FOR DAMAGES FOR ANY CAUSE WHATSOEVER, REGARDLESS OF THE FORM OF ANY CLAIM OR ACTION, SHALL NOT EXCEED THE GREATER OF THE AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE PRODUCT OR U.S.\$5.00; PROVIDED THAT IF YOU HAVE ENTERED INTO A SUPPORT SERVICES AGREEMENT WITH LECROY, LECROY'S ENTIRE LIABILITY REGARDING SUPPORT SERVICES WILL BE GOVERNED BY THE TERMS OF THAT AGREEMENT. LECROY SHALL NOT BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF USE, LOSS OF DATA, INTERRUPTION OF BUSINESS, NOR FOR INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES OF ANY KIND, WHETHER UNDER THIS EULA OR OTHERWISE ARISING IN ANY WAY IN CONNECTION WITH THE SOFTWARE PRODUCT, THE DOCUMENTATION OR THIS EULA. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE EXCLUSION OR LIMITATION MAY NOT APPLY TO YOU. THESE LIMITATIONS ARE INDEPENDENT FROM ALL OTHER PROVISIONS OF THIS EULA AND

SHALL APPLY NOTWITHSTANDING THE FAILURE OF ANY REMEDY PROVIDED HEREIN.

7.3. **Indemnification**. You will defend, indemnify and hold harmless LeCroy and its officers, directors, affiliates, contractors, agents, and employees from, against and in respect of any and all assessments, damages, deficiencies, judgments, losses, obligations and liabilities (including costs of collection and reasonable attorneys' fees, expert witness fees and expenses) imposed upon or suffered or incurred by them arising from or related to your use of the Software Product.

8. GENERAL PROVISIONS.

8.1. **Compliance with Laws**. You will comply with all laws, legislation, rules, regulations, and governmental requirements with respect to the Software Product, and the performance by you of your obligations hereunder, of any jurisdiction in or from which you directly or indirectly cause the Software Product to be used or accessed.

8.2. **No Agency**. Nothing contained in this EULA will be deemed to constitute either party as the agent or representative of the other party, or both parties as joint venturers or partners for any purpose.

8.3. Entire Agreement; Waiver; Severability. This EULA constitutes the entire agreement between the parties with regard to the subject matter hereof. No provision of, right, power or privilege under this EULA will be deemed to have been waived by any act, delay, omission or acquiescence by LeCroy, its agents, or employees, but only by an instrument in writing signed by an authorized officer of LeCroy. No waiver by LeCroy of any breach or default of any provision of this EULA by you will be effective as to any other breach or default, whether of the same or any other provision and whether occurring prior to, concurrent with, or subsequent to the date of such waiver. If any provision of this EULA is declared by a court of competent jurisdiction to be invalid, illegal or unenforceable, such provision will be severed from this

EULA and all the other provisions will remain in full force and effect.

8.4. **Governing Law; Jurisdiction; Venue**. This EULA will be governed by and construed in accordance with the laws of the State of New York, USA, without regard to its choice of law provisions. The United Nations Convention on Contracts for the International Sale of Goods will not apply to this EULA. Exclusive jurisdiction and venue for any litigation arising under this EULA is in the federal and state courts located in New York, New York, USA and both parties hereby consent to such jurisdiction and venue for this purpose.

8.5. **Assignment**. This EULA and the rights and obligations hereunder, may not be assigned, in whole or in part by you, except to a successor to the whole of your business, without the prior written consent of LeCroy. In the case of any permitted assignment or transfer of or under this EULA, this EULA or the relevant provisions will be binding upon, and inure to the benefit of, the successors, executors, heirs, representatives, administrators and assigns of the parties hereto.

8.6. **Notices**. All notices or other communications between LeCroy and you under this EULA will be in writing and delivered personally, sent by confirmed fax, by confirmed e-mail, by certified mail, postage prepaid and return receipt requested, or by a nationally recognized express delivery service. All notices will be in English and will be effective upon receipt.

8.7. **Headings**. The headings used in this EULA are intended for convenience only and will not be deemed to supersede or modify any provisions.

8.8. Acknowledgment. Licensee acknowledges that (a) it has read and understands this EULA, (b) it has had an opportunity to have its legal counsel review this EULA, (c) this EULA has the same force and effect as a signed agreement, and (d) issuance of this EULA does not constitute general publication of the Software Product or other Confidential Information.

Windows® License Agreement

LeCroy's agreement with Microsoft prohibits users from running software on LeCroy X-Stream oscilloscopes that is not relevant to measuring, analyzing, or documenting waveforms.

Index

Α

abnormal conditions, 12 Absolute, 102 ac power source, 7 Acquisition, 174 actions, 127 Actions for Trace Buttons, 44 Annotating Traces, 44 attenuation, 67 autogrid, 89 Aux Output, 168 Auxiliary Output Signals, 169 axis labels, 90 Condition-Based Right-Hand Dialogs, 124 cooling, 7 coupling, 67 Coupling, 78 Create a Folder, 172 cursors icons, 101 setup, 102 Cursors, 27, 103 customization connectivity, 141 Customization Overview, 141

D

data formats, 152 В date & time, 170 Back Panel, 18 Decode, 28 bandwidth limiting setup, 68 Default Recipient Address (To, 177 С Delete a single file, 172 Delete all files in a folder, 172 calibration, 11 deleting files, 171 channel deskew, 70 deskewing channels, 70 cleaning, 11 Dialog Area, 46 clipboard, 163 disk utilities, 171 Color, 178 **Display Dashboard Overview**, 38

Getting Started Manual

Display Overview, 87 Displaying an Individual Segment, 62 Displays Containing Masks, 91 Dual Display Grid Selection, 92

Ε

E-Mail, 176

F

file name numbering, 151 files: deleting, 171 find scale, 69 Flashback (Recall), 145 Front Panel, 13 Front Panel Controls, 19

G

gain: varying, 69 grid intensity, 89 grid on top, 90

Н

hardcopy setup, 160 Hardware and Software Controls, 19 Help, 109 help markers, 107

WR6Zi-GSM-E

histograms creating and viewing, 112 History, 29 holdoff, 81 Horizontal Front Panel Controls, 23

I

I/O Panel, 17 Intensity knob, 95 intensity of grid, 89 intensity of trace, 90 inverting waveforms, 69

L

LabNotebook, 30 drawing toolbar, 144 LabNotebook Overivew, 143 Level, 80 Linear, 69

Μ

Mask Testing, 133 Math Traces and Functions Overview, 130, 131 Math, Zoom, and Memory Indicators and Controls, 24 measure modes, 107

Measurement Parameter Analysis Overview, 110 Measurement Parameters Overview, 104 Measuring with Cursors Overview, 101 Menu Bar, 39 Message Bar, 52 Miscellaneous, 179 Miscellaneous Setup Controls and WaveStream Indicator, 20 moving traces, 91

0

operating environment, 5 operating system: restarting, 183 operational states, 10 Optimize, 80 Originator Address (From, 177 overload protection, 67 Overview of E-Mail modes, 177

Ρ

Parameter Measurements, 140 parameter setup, 105 parameters measure modes, 107 standard vertical, 107 Pass/Fail Condition Setup, 123 Pass/Fail Parameter Testing Overview, 121 pass/fail testing actions. 127 Pass/Fail Testing Setup, 128 Passive Probe Compensation, 37 performance optimization, 174 Persistence, 93 Persistence Setup, 93 power & ground connections, 8 Preference Setup, 173 Preferences, 173 Printing, 163 **Probe and Signal Connection** Interfaces Overview, 32 probe attenuation, 67 Probe Interfaces Overview, 33 Probes, 36

Q

Quick, 104 Quick Access to Pass/Fail Setup Dialogs, 135

R

recalling default scope settings, 150

Getting Started Manual

Recalling Setup(s) Directly from a File, 150 Recalling Setup(s) Internally on Your Instrument, 150 Recalling Waveforms, 154 remote: configuring, 158 Removing a Mask from the Display, 135 Restoring Software Usng the Acronis Application, 179 RIS mode, 64 roll mode, 64

S

Safety, 6 safety symbols, 3 Sampling Mode, 140 sampling modes, 55 Save/Recall Overview, 148 Saving and Recalling Setups, 149 Saving and Recalling Waveforms, 151 Saving Oscilloscope Setup(s), 149 Saving Setup(s) Directly to a File, 149 Saving Setup(s) Internally on Your Instrument, 149 Saving TriggerScan Setups, 87

Saving Waveforms, 151 Screen Layout, Groupings, and Controls, 38 Search Modes, 139 segments displaying, 62 Send Test Mail, 177 sensitivity and position: adjusting, 66 Sequence Display Modes, 58 sequence mode display setup, 90 Sequence Sampling Mode – Working with Segments, 56 sequence sampling mode display modes, 62 timeouts, 60 Setting, 103 Setting Up Sequence Mode, 59 Setup, 78 Signal Display Grid Pop-Up Menu, 42 Signal Views, 139 single-shot sampling mode, 55 Slope, 79 SMTP Server, 177 SNTP, 170 Source, 78 Spectrum, 30

Starting TriggerScan, 86 status of scope, 158

Т

technical support, 187 Testing and Enabling Pass/Fail Conditions, 122 The Quick Access Toolbar, 39 The Signal Display Grid, 40 The WavePilot Control Area and The SuperKnob Overview, 25 time stamps, 63 Timebase Settings and Controls, 54 Trace Descriptor Labels, 42 trace intensity, 90 track views, 120 Training TriggerScan, 85 trend: creating and viewing, 119 Trigger, 77 trigger counter, 175 trigger coupling, 79 Trigger Front Panel Controls, 21 Trigger Overview, 71 trigger setup coupling, 79 holdoff, 81 trigger types, 71 trigger types, 71

TriggerScan, 84 Turning, 104 Turning on Channels and Traces, 52 Type, 78

U

utilities acquisition status, 176 audio feedback. 173 autocalibration, 174 auxiliary output signals, 169 clipboard, 163 date & time, 170 delay control, 175 delay in, 175 email, 166 file, 164 hardcopy, 160 offset control, 174 options, 171 performance optimization, 174 remote: configuring, 158 SNTP, 170 status, 158 trigger counter, 175 Utilities Dialog, 156

Getting Started Manual

Utilities Overview, 156

V

variable gain, 69 Vertical Front Panel Controls, 23 view aux in, 83

w

waveform position, 66 WaveML data format, 153 WavePro, 184 WaveScan, 29 WaveScan Overview, 138 WaveStream, 95 Width, 81 Windows operating system, 183

Ζ

Zooming Segments in Sequence Mode, 61

Zooming Waveforms Overview, 96

Thank you for purchasing a WaveRunner 6 Zi oscilloscope.

Corporate Headquarters 700 Chestnut Ridge Road Chestnut Ridge, NY 10977 USA www.lecroy.com