Geant4 User's Guide
for Toolkit Developers

Version: geant4 9.2

Published 19 December, 2008

Geant4 Collaboration

Geant4 User's Guide for Toolkit Developers
by Geant4 Collaboration

Version: geant4 9.2

Published 19 December, 2008

Table of Contents

IO 1 oo [0 1o T PPN 1
1.1, Scope Of thiS MANUEBLoiiiiii e e e e e e e e 1
1.2, HOW tO USE thiS MANUAL .. .oeviiiiiii e e e et eaanas 1
1.3, User ReqUIrEMENtS DOCUMENTuiiiiiiii et e e e e e e e e e e e e e e e e e et e e e e e et e e ean e eaneeees 1

2. Design and Function of GEant4d Cat@QONESceeuuiiiiieii i et e et e e e e e e e e e e e e e e e e eanas 2
P22 O [oo (8o 1o o TSP 2
2.2 RUN e et 2

2.2.1. DeSIgN PhilOSOPNY ...eeeeicii et 2
A O -3 D= o o 2
T Y | PP PPN 2
2.3.1. DeSign PhilOSOPNYiieeiii e 2
A O -3 D= o o 2
S I - (1 o PP 3
2.4.1. DeSIgN PhilOSOPNYcieieii e 4
N O T D= o o 4
2.4.3. Tracking AlQOrithm ... e e 5
2.4.4. Interaction With PhySICS PrOCESSES ...vuuivvueiiiieiiiieeiiee e e e et e e e e e e e et e e e e eeees 6
2.4.5. Ordering of Methods of PhySiCS PrOCESSEScovvvniiiiiiiiiieeie e 8
A o)V oo 00> 8
2.5.1. DeSIgN PhilOSOPNYceeeii e 8
I O -3 D= o o 9
2.6. Hits and DigitiZationcc.uieiiiiiiiiiei e 9
2.6.1. DeSign PhilOSOPNYcieeiii e 9
A O - D= o o 10
A R <o 1 0 1 11
A 5 T B 1= Lo T = 1] 1o o 11
A - D = o o 11
2.7.3. Additional GEOmMELry DIiagraMScveeuuieiiiieiiiieeie e e s e e e e e e e e et e e e eanaeeees 13
2.8. ElectromagnetiC FIElAScocvuiiiiiiii e e e 14
2.9, PaltiCIES .. 15
2.9.1. DeSign PhilOSOPNYcceiiii e 15
e A O - D = o o 15
P O Y = 1= g = SO 17
2.10.1. Design PhiloSOphYoiiiiicii e 17
2.10.2. ClaSS DESION covuiiiiiieii ittt 17
2250 T 1)o7 LU L= o 18
2.11.1. Design PhiloSOphYooiiiiii e 18
0 R O - S = o [18
A Y LS U 1= 1 o] o PSP 21
2.12.1. Design PhiloSOphYiiiiiiic e 21
2.12.2. The GraphiCs INTEIfaCESuuiviiiiiii i e e e e e 21
2.12.3. The Geant4 Visualisation SYSIEMcieuiiiiiiiiii e e e e e e e 22
2 2V oo (= T g o IS U o oo 1= 0] 23
A S AT A o =041 = 24
2.12.6. Visualisation AITDULESooiiiiiieiiiiie et eeea e e 24
N 1 01 = (o] 1 1 PP PTTPPTTUPPRPPIN 26
2.13.1. Design PhiloSOphYooiiiiicicc e 26
00 T O - S = o [26

3. Extending ToolKit FUNCHONAILYoieeiiiiiii e e e e e e e e e e e e e e anaeeeen 28

G 00 T =0 0 1 28
3.1.1. What can be extended ?oiiiiiiiiiiii 28
3.1.2. Adding a new type of SOlidcccovniiiiiiie s 28
3.1.3. Modifying the NaVIQatorcc..iieiiieiiiieii e e e e e e e e e e 30

3.2. ElectromagnetiC FIElAScocvniiiiiiii e e 31
3.2.1. Creating aNew Type Of FIeldccoiiiiiii e e 31

Geant4 User's Guide
for Toolkit Developers

B3 PatICIES ..t 33
3.3.1. Properties of PartiCleso..uiiiiiiiiii e 33
3.3.2. AddINg NEBW PartiClESccoiiiiiiiii e et eab e 34

3. PHYSICS PrOCESSES ...ttt ettt ettt 35

3.5, HabrONIC PRYSICS ...ttt ettt e e e e e e et e e eaa e eee 35
5.1 INEFOAUCTION ..ttt e et e e b 35
3.5.2. Principal CONSIAEIAIONScceuuiiiiiiiiiee it e e e eeaans 35
3.5.3. Level 1 Framework - PrOCESSESiiieuruieiiiii ettt e e et e e et e e e eat e e e eat e e eentnaaaees 35
3.5.4. Level 2 Framework - Cross Sections and MOAEIScoouviiiiiiiiiiiiiiiieec e 36
3.5.5. Level 3 Framework - Theoretical MOTEISccovviiiiiiiiii e 39
3.5.6. Level 4 Frameworks - String Parton Models and Intra-Nuclear Cascadec.cccun.... 41
3.5.7. Level 5 Framework - String De-exCitation}coooeeiiiiiiiiiiiiieeiiii e 42

3.6, VISUBLISALION ...ttt ettt 43
3.6.1. Creating a new graphiCs AIVErviiiiiiiei e 43
3.6.2. Enhanced TrajeCtory DIBWINGocoeeruueiiiii ittt e e e e e e enees 49
3.6.3. TrajeCtory Filteringcouuuiiiiii e 50
3.6.4. OtNEr RESOUITESuieiiii ettt ettt ettt et ettt e ettt e e et eeeaa s 51

2] ol oo = o] | TP OPPPTTRUPPIN 52

Chapter 1. Introduction

1.1. Scope of this manual

The User's Guide for Toolkit Developers provides detailed information about the design of Geant4 classes as well
as the information required to extend the current functionality of the Geant4 toolkit. This manual is designed to:

* provide a repository of information for those who want to understand or refer to the detailed design of the
toolkit, and

 provide details and procedures for extending the functionality of the toolkit so that experienced users may
contribute code which is consistent with the overall design of Geant4.

This manual isintended for devel opers and experienced users of Geant4. It is assumed that the reader is already
familiar with functionality of the Geant4 toolkit as explained in the " User's Guide For Application Developers’,
and al so hasaworking knowledge of programming using C++. A knowledge of object-oriented analysisand design
will also be useful in understanding this manual. It is also useful to consult the **Software Reference Manual"
which provides alist of Geant4 classes and their major methods.

Detailed discussions of the physicsincluded in Geant4 are provided in the ““Physics Reference Manua".

1.2. How to use this manual

Part I: to understand the goal of the software design of Geant4, it is useful to begin by reading the User Require-
ments Document referred to in the next section.

Part I1: “"Design and Function of the Geant4 Categories' provides detailed information about the design of each
class category and the classes in it. Before considering an extension of one of the toolkit categories, a detailed
understanding of that category is required.

Part I11: “"Extending Toolkit Functionality" explains in some detail how to extend the functionality of Geant4.
Most of the class categories are covered and some, which are especially useful to most users, are covered in greater
detail.

Itisnot necessary to understand the entire manual before adding anew functionality. To add anew physics process,
for example, only the following items must be read and understood:

» the design principle described in the “"Physics processes' chapter of Part 11
» techniques explained in the **Physics processes"' chapter of Part I11.

1.3. User Requirements Document

At the beginning of Geant4 development, a set of user requirementswas collected in order to inform the object-ori-
ented analysis and design of thetoolkit. The User Requirements Document follows the PSS-05 software engineer-
ing standards and is available at

http://cern.ch/geant4/OOAandD/URD.pdf .
This document provides ageneral description of the main capabilities and constraints of the toolkit. It also defines

threetypes of users characterized by their level of interaction with the system. Specific requirementsarealso listed
and classified.

[Status of this chapter]

24.06.05 - re-organized and re-written by D.H. Wright

http://cern.ch/geant4/OOAandD/URD.pdf

Chapter 2. Design and Function of Geant4
Categories

2.1. Introduction

Geant4 exploits advanced software engineering techniques based on the Booch/UML Object Oriented Method-
ology and follows the evolution of the ESA Software Engineering Standards for the development process. The
"spiral", or iterative, approach has been adopted. User requirementswere collected intheinitial phase and problem
domain decomposition, object-oriented methods, and CASE tools were used for analysis and design. This pro-
duced aclear hierarchical structure of sub-domainslinked by a uni-directional flow of dependencies. Thisledto a
software product which is modular and flexible (atoolkit) and in which the physics implementation is transparent
and open to user validation of physics predictions. It allows the user to understand, customize and extend the
toolkit in al domains. At the same time the modular architecture allows the user to load only needed components.

2.2. Run
2.2.1. Design Philosophy

The run category manages collections of events that share a common beam and detector implementation.

2.2.2. Class Design

* G4Run - This class represents arun. An object of this classis constructed and deleted by G4ARunManager.

* G4RunManager - the run controller class. Users must register detector construction, physics list and primary
generator action classesto it. GARunManager or a derived class must be a singleton.

* G4RunManagerKernel - provides control of the Geant4 kernel. This classis constructed by G4ARunManager.

[Status of this chapter]

28.06.05 - under construction
December 2006 - Converted from latex to Docbook by K. Amako

2.3. Event
2.3.1. Design Philosophy

In high energy physics the primary unit of an experimental run is an event. An event consists of a set of primary
particles produced in an interaction, and a set of detector responses to these particles.

In Geant4, objects of the G4Event class are the primary units of a simulation run. Before the event is processed,
it contains primary vertices and primary particles produced by an external physics generator. After the event is
processed, it may also contain hits, digitizations ,and optionally, trajectories generated by the simulation. The
event category manages events and provides an abstract interface to external physics generators.

G4Event and its content vertices and particles are independent of other classes. This isolation allows Geant4-
based simulation programs to be independent of specific choices for physics generators and of specific solutions
for storing the “Monte Carlo truth". G4Event avoids keeping any transient information which is not meaningful
after event processing is complete. Thus the user can store objects of this class for processing further down the
program chain. For performance reasons, G4Event and its content classes are not persistent. Instead the user must
provide the transient-to-persistent conversion.

2.3.2. Class Design

» G4Event - This class represents an event. It is constructed and deleted by G4RunManager or its derived class.

Design and Function
of Geant4 Categories

* G4EventManager - This class controls an event. It must be a singleton and should be constructed by
G4RunManager.

» G4VPrimaryGenerator - the abstract base class of all of primary generators. This class has only one pure
virtual method, GeneratePrimaryV ertex(), which takes a G4Event object, generates a primary vertex and asso-
ciates primary particles with the vertex.

Booch diagramsfor classesrelated to the event and event generator classes are shown in Figure 2.1 and Figure 2.2.

SiCanibds e
)

IR

‘ \) [—

Fils sssrmesaigly BSLATGl F1AsgEl I0Y 199 Lass feqrsm Everierager it Man

Figure2.1. Event

G4EveniGenerator
addGenerator |

generateCneEvent| |
gimmeaVertex()

/ G4OrdersdV
g ector
{from BaseClass)
o i
"
~
| .
genaratars
| .
s) S
G4PrimaryGenerator /" caprimanyVertas ™ / @aDynamicFarle
taF Vartex(] . it
e en AP vertes /7 paint: GaThraeVactor | 17 (from P hysicsPracess)
: ; / fime : G4double —— inear
& vertex | L 2a . i) |
{ GAUserPrimaryGen =%, | “ 4 /\\t_
d arator / A ‘ — P
| Ay o ey -
A - e
B Ve
—— GaParticleDefinifion ™ ~ G4DymamicParticle ™,
GaParticleGun - " {from PariicleDafinition) ~" {irom ParticleDefinitiar) ,

set_particle_definiion()
set_particle_sneray(| - hl
sel_particls_momentum) /
sét_paricle_position(| |

.
b

Fie: fusam/hurasige/AOSERQA0Ea1.md Thu Aug 31 19:5830 1985 Glass Diagram: EventGenerator / Main

Figure 2.2. Event Generator

[Status of this chapter]

27.06.05 design philosophy section added (from Geant4 general paper) by D.H. Wright
Dec. 2006 Conversion from latex to Docbook verson by K. Amako

2.4. Tracking

The tracking category manages the contribution of the processes to the evolution of atrack's state and provides
information in sensitive volumes for hits and digitization.

Design and Function
of Geant4 Categories

2.4.1. Design Philosophy

It iswell known that the overall performance of a detector simulation depends critically on the CPU time spent
propagating the particle through one step. The most important consideration in the object design of the tracking
category is maintaining high execution speed in the Geant4 simulation while utilizing the power of the object-ori-
ented approach.

An extreme approach to the particle tracking design would be to integrate al functionalities required for the
propagation of a particle into a single class. This design approach looks object-oriented because a particle in the
real world propagates by itself whileinteracting with the material surrounding it. However, interms of datahiding,
which is one of the most important ingredients in the object-oriented approach, the design can be improved.

Combining al the necessary functionalities into asingle class exposes all the data attributes to alarge number of
methods in the class. Thisis basically equivalent to using acommon block in Fortran.

Instead of the 'big-class approach, a hierarchical design was employed by Geant4. The hierarchical approach,
whichincludesinheritance and aggregation, enableslarge, complex software systemsto be designed in astructured
way. The simulation of a particle passing through matter is a complex task involving particles, detector geometry,
physics interactions and hitsin the detector. It is well-suited to the hierarchical approach. The hierarchical design
manages the complexity of the tracking category by separating the system into layers. Each layer may then be
designed independently of the others.

In order to maintain high-performance tracking, use of the inheritance ('is-a relation) hierarchy in the tracking
category wasavoided asmuch aspossible. For example, t r ack andpar ti cl e classesmight have been designed
so that atrack 'isa parti cl e. In this scheme, however, whenever atr ack object is used, time is spent
copying the datafrom the par t i cl e object into thet r ack object. Adopting the aggregation (‘has-& relation)
hierarchy requires only pointers to be copied, thus providing a performance advantage.

2.4.2. Class Design

Figure 2.3 shows a general overview of the tracking design in Unified Modelling Language Notation.

Tilll lem " raekivi i

=L cuhindanogn

[NIy TNE R RTLEE

w01 T

=g u e [T T R——
Fielaztadilng s aliatector

T iwkn ahE

“Finectadit Te st E Y ectn | Fucha,
= -
5 Fin mkmd A it s 2 ek

1

— u
“hacoriay,

FrT ackiiecr

vil Aelagtad"ectikop Mok eckor

=Twr Sl o i e o
l m
5 Iz il o

TiLE wpnr W en

L ke iR i) n '1 Rles Stagargdsdon

U1 frarbaes

Figure 2.3. Tracking design

Design and Function
of Geant4 Categories

» G4TrackingManager is an interface between the event and track categories and the tracking catego-
ry. It handles the message passing between the upper hierarchical object, which is the event manager
(AEvent Manager z), and lower hierarchical objects in the tracking category. GATr acki nghManager is
responsible for processing one track which it receives from the event manager.

ATracki ngManager aggregates the pointers to G4St eppi ngManager, GATraj ectory and
HAUser Tracki ngAct i on. It also hasa'use relation to G4 Tr ack.

e G4SteppingManager plays an essential role in particle tracking. It performs message passing to objects in
al categories related to particle transport, such as geometry and physics processes. Its public method St ep-
pi ng() steersthe stepping of the particle. The algorithm employed in this method is basically the same as that
in Geant3. The Geant4 implementation, however, relies on the inheritance hierarchy of the physicsinteractions.
The hierarchical design of the physics interactions enables the stepping manager to handle them as abstract
objects. Hence, the manager is not concerned with concrete interaction objects such as bremsstrahlung or pair
creation. The actual invocations of various interactions during the stepping are done through a dynamic binding
mechanism. This mechanism shields the tracking category from any change in the design of the physics process
classes, including the addition or subtraction of new processes.

GASt eppi ngManager also aggregates

« the pointersto G4Navi gat or from the geometry category, to the current G4Tr ack, and

« thelist of secondariesfrom the current track (throughaGATr ackVect or) to (AUser St eppi ngAct i on
and to AVSt eppi hgVer bose.

Italso hasa'use relationto GAPr ocessManager and G4Part i cl eChange inthe physics processes class

category.

* GA4Track - the class GATr ack represents a particle which is pushed by GASt eppi ngManager . It holds
information required for stepping aparticle, for example, the current position, thetime sincethe start of stepping,
the identification of the geometrical volume which contains the particle, etc. Dynamic information, such as
particle momentum and energy, is held in the class through a pointer to the GADynarmi cParti cl e class.
Static information, such as the particle mass and charge is stored in the &ADynami cPar t i cl e classthrough
the pointer to the 4Par ti cl eDef i ni ti on class. Here the aggregation hierarchical design is extensively
employed to maintain high tracking performance.

» G4TrajectoryPoint and G4Trajectory - the class GATr aj ect or yPoi nt holds the state of the particle
after propagating one step. Among other things, it includes information on space-time, energy-momentum and
geometrical volumes.

(ATr aj ect ory aggregatesall G4Tr aj ect or yPoi nt objects which belong to the particle being propagat-
ed. ATr acki ngManager takes care of adding the G4Tr aj ect or yPoi nt to aGATr aj ect ory object
if the user requested it (see Geant4 User's Guide - For Application Developers. Thelifeof aG4Tr aj ect ory
object spans an event, contrary to G4 Tr ack objects, which are deleted from memory after being processed.

e G4User TrackingAction and G4User SteppingAction - GAUser Tr acki ngAct i on is a base class from
which user actions at the beginning or end of tracking may be derived. Similarly, G4User St eppi ngActi on
is abase class from which user actions at the beginning or end of each step may be derived.

2.4.3. Tracking Algorithm

Thekey classesfor tracking in Geant4 are A Tr acki ngManager and G4St eppi ngManager . The singleton
object "TrackingManager" from GATr acki ngianager keeps all information related to a particular track, and
it also manages all actions necessary to complete the tracking. The tracking proceeds by pushing a particle by
a step, the length of which is defined by one of the active processes. The "TrackingManager” object delegates
management of each of the steps to the " SteppingManager” object. This object keeps all information related to
aparticular step.

The public method Pr ocessOneTrack() in G4Tracki ngManager is the key to managing the tracking,
while the public method St eppi ng() isthe key to managing one step. The algorithms used in these methods
are explained below.

ProcessOneTrack() in G4TrackingM anager

1. Actions before tracking the particle: Clear secondary particle vector

http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/index.html

Design and Function
of Geant4 Categories

OOk, WDN

~

. Pretracking user intervention process.

. Construct atrajectory if it is requested

. Give SteppingManager the pointer to the track which will be tracked
. Inform beginning of tracking to physics processes

. Track the particle Step-by-Step whileitisalive

» Call Stepping method of G4SteppingM anager
» Append atrajectory point to the trajectory object if it is requested

. Post tracking user intervention process.
. Destroy the trgjectory if it was created

Stepping() in G4SteppingM anager

. Initialize current step
. If particleisstopped, get theminimum lifetimefrom all the at rest processes and invoke InvokeAtRestDol tProcs

for the selected AtRest processes

. If particleis not stopped:

* Invoke DefinePhysical Stepl ength, that finds the minimum step length demanded by the active processes
* Invoke InvokeAlongStepDoltProcs

» Update current track properties by taking into account all changes by AlongStepDolt

» Update the safety

* Invoke PostStepDolt of the active discrete process.

» Update the track length

» Send G4Step information to Hit/Dig if the volumeis sensitive

* Invoke the user intervention process.

* Return the value of the StepStatus.

2.4.4. Interaction with Physics Processes

Theinteraction of thetracking category with the physics processesis donein two ways. First each process can limit
the step length through one of itsthree Get Physi cal | nt er act i onLengt h() methods, AtRest, AlongStep,
or PostStep. Second, for the selected processes the Dolt (AtRest, AlongStep or PostStep) methods are invoked.
All thisinteraction is managed by the Stepping method of GASt eppi ngManager . To calculate the step length,
the Def i nePhysi cal St epLengt h() method is caled. The flow of this method is the following:

Obtain maximum allowed Step in the volume define by the user through G4UserLimits.

The PostStepGetPhysical | nteractionL ength of all active processesis called. Each process returns a step length
and the minimum oneis chosen. This method al so returns a G4ForceCondition flag, to indicate if the processis
forced or not: = Forced : Corresponding PostStepDolt is forced. = NotForced : Corresponding PostStepDolt is
not forced unless this process limits the step. = Conditionally : Only when AlongStepDolt limits the step, cor-
responding PoststepDolt isinvoked. = ExclusivelyForced : Corresponding PostStepDolt is exclusively forced.
All other Dolt including AlongStepDolts are ignored.

The AlongStepGetPhysical I nteractionL ength method of all active processesis called. Each process returns a
step length and the minimum of these and the This method also returns afGPIL Selection flag, to indicateif the
process is the selected one can be is forced or not: = CandidateForSelection: this process can be the winner. If
its step length is the smallest, it will be the process defining the step (the process = NotCandi dateFor Sel ection:
this process cannot be the winner. Even if its step length is taken as the smallest, it will not be the process
defining the step

The method G4St eppi ngManager : : | nvokeAl ongSt epDol t s() isin charge of caling the AlongStep-
Dolt methods of the different processes:

If the current step isdefined by a'ExclusivelyForced' PostStepGetPhysical I nteractionL ength, no AlongStepDolt

method will be invoked

Else, al the active continuous processes will be invoked, and they return the ParticleChange. After it for each

process the following is executed:

« Update the G4Step information by using final state information of the track given by a physics process. This
is done through the UpdateStepForAlongStep method of the ParticleChange

6

Design and Function
of Geant4 Categories

¢ Then for each secondary:

* It is checked if its kinetic energy is smaller than the energy threshold for the material. In this case the
particle is assigned a 0. kinetic energy and its energy is added as deposited energy of the parent track.
This check is only doneif the flag ApplyCutFlag is set for the particle (by default it is set to 'false’ for all
particles, user may changeitinits G4V UserPhysicsList). If thetrack hasthe flag 1sGoodForTracking 'true'
this check will have no effect (used mainly to track particles below threshold)

* The parentID and the process pointer which created this track are set

» The secondary track is added to the list of secondaries. If it has 0. kinetic energy, it is only added if it it
invokes arest process at the beginning of the tracking

e Thetrack statusis set according to what the process defined

The method G4St eppi ngManager : : | nvokePost St epDol t s is on charge of calling the PostStepDolt
methods of the different processes.

* Invoke the PostStepDolt methods of the specified discrete process (the one selected by the PostStepGetPhysi-
callnteractionL ength, and they return the ParticleChange. The order of invocation of processesisinverseto the
order used for the GPIL methods. After it for each process the following is executed:

« Update PostStepPoint of Step according to ParticleChange

¢ Update G4Track according to ParticleChange after each PostStepDolt
e Update safety after each invocation of PostStepDolts

¢ The secondaries from ParticleChange are stored to SecondaryL ist

e Then for each secondary:

* It is checked if its kinetic energy is smaller than the energy threshold for the material. In this case the
particle is assigned a 0. kinetic energy and its energy is added as deposited energy of the parent track.
This check is only done if the flag ApplyCutFlag is set for the particle (by default it is set to false' for al
particles, user may changeitinits G4V UserPhysicsList). If thetrack hasthe flag IsGoodForTracking 'true'
this check will have no effect (used mainly to track particles below threshold)

» The parentID and the process pointer which created this track are set

» The secondary track is added to the list of secondaries. If it has 0. kinetic energy, it is only added if it it
invokes arest process at the beginning of the tracking

e Thetrack statusis set according to what the process defined

The method GASt eppi ngManager : : | nvokeAt Rest Dol t s iscalled instead of the three above methodsin
case the track status is fStopAndALive. It is on charge of selecting the rest process which has the shortest time
before and then invoke it:

» To select the process with shortest tiem, the AtRestGPIL method of all active processesis called. Each process
returnsan lifetime and the minimum oneischosen. Thismethod returm al so aG4ForceCondition flag, to indicate
if the processis forced or not: = Forced : Corresponding AtRestDolt is forced. = NotForced : Corresponding
AtRestDolt is not forced unless this process limits the step.

» Set the step length of current track and step to 0.

* Invoke the AtRestDolt methods of the specified at rest process, and they return the ParticleChange. The order
of invocation of processesisinverse to the order used for the GPIL methods.

After it for each process the following is executed:

» Set the current process as a process which defined this Step length.

» Update the G4Step information by using final state information of the track given by a physics process. This
is done through the UpdateStepForAtRest method of the ParticleChange.

» The secondaries from ParticleChange are stored to SecondaryL ist

e Then for each secondary:

It is checked if its kinetic energy is smaller than the energy threshold for the material. In this case the
particle is assigned a 0. kinetic energy and its energy is added as deposited energy of the parent track.
This check is only doneif the flag ApplyCutFlag is set for the particle (by default it is set to 'false’ for all
particles, user may changeitinits G4V UserPhysicsList). If thetrack hasthe flag 1sGoodForTracking 'true’
this check will have no effect (used mainly to track particles below threshold)

» The parentl D and the process pointer which created this track are set

» The secondary track is added to the list of secondaries. If it has 0. kinetic energy, it is only added if it it
invokes arest process at the beginning of the tracking

» Thetrack isupdated and its statusis set according to what the process defined

Design and Function
of Geant4 Categories

2.4.5. Ordering of Methods of Physics Processes

The ProcessManager of a particle is responsible for providing the correct ordering of process invocations.
ASt eppi ngManager invokes the processes at each phase just following the order given by the ProcessMan-
ager of the corresponding particle.

For some processes the order is important. Geant4 provides by default the right ordering. It is always possible
for the user to choose the order of process invocations at theinitial set up phase of Geant4. This default ordering
isthe following:

1. Ordering of GetPhysicallnteractionLength
 Intheloop of GetPhysicallnteractionLength of AlongStepDolt, the Transportation process hasto beinvoked
a theend.
* In the loop of GetPhysicallnteractionLength of AlongStepDolt, the Multiple Scattering process has to be
invoked just before the Transportation process.
2. Ordering of Dolts
» Thereis only some specia cases. For example, the Cherenkov process needs the energy loss information
of the current step for its Dolt invocation. Therefore, the EnergyL oss process has to be invoked before the
Cherenkov process. This ordering is provided by the process manager. Energy loss information necessary
for the Cherenkov process is passed using G4Step (or the static dE/dX table is used together with the step
length information in G4Step to obtain the energy loss information). Any other?

[Status of this chapter]

Nov. 1998 created by K. Amako

10.06.02 partialy re-written by D.H. Wright

14.11.02 updated and partially re-written by P. Arce

Dec. 2006 Converted from latex to Docbook by K. Amako

2.5. Physics Processes

2.5.1. Design Philosophy

The processes category contains the implementations of particle transportation and physical interactions. All
physics process conform to the basic interface 4VPr ocess, but different approaches have been developed for
the detailed design of each sub-category.

For the decay sub-category, the decays of al long-lived, unstable particles are handled by a single process. This
process gets the step length from the mean life of the particle. The generation of decay products requires a knowl-
edge of the branching ratios and/or data distributions stored in the particle class.

The electromagnetic sub-category is divided further into the following packages:

» st andar d: handling basic properties for electron, positron, photon and hadron interactions,

e | ow ener gy: providing alternative models extended down to lower energies than the standard package,
* nuons: handling muon interactions,

* X-rays: providing specific code for x-ray physics,

e opti cal : providing specific code for optical photons,

» util s: collecting utility classes used by the above packages.

It provides the features of openness and extensibilty resulting from the use of object-oriented technology; alterna-
tive physics model s, obeying the same process abstract interface, are often availablefor agiven type of interaction.

For hadronic physics, an additional set of implementation frameworks was added to accommodate the large num-
ber of possible modeling approaches. The top-level framework provides the basic interface to other Geant4 cate-
gories. It satisfies the most general use-case for hadronic shower simulations, namely to provide inclusive cross
sections and final state generation. The frameworks are then refined for increasingly specific use-cases, building
ahierarchy in which each level implements the interface specified by the level aboveit. A given hadronic process

Design and Function
of Geant4 Categories

may be implemented at any one of these levels. For example, the process may be implemented by one of several
models, and each of the models may in turn be implemented by several sub-models at the lower framework levels.

2.5.2. Class Design
2.5.2.1. General

The object-oriented design of the generic physics process G4V Process and its relation to the process manager is
shown in Figure 2.4. Figure 2.5 shows how specific physics processes are related to G4V Process.

GaProosssharager

. Enstochn |
GaPraceszAtr O i
Veokr [
- arnras e =
= * >
g A e Tt
! GaProcmssAlitute ; | G Physica Table Vodor
’ | i P
. \ 3
AT thaPropiten
< AwTRCRea ! g
7 vortar / o |
rom Mook | \ ! . s . AWTVaCToed
- ht [x ' T o ¢ i
5 e . - y Ry =]
- ¥ GaProcessVector - L] V
4R TPrccess | 4 .
Vector _i S s 7 3
[—— e / ' GaPhysicsVectar | [t
: V- i S
Grae ! . y
tha gyt ¥ W GaDataVeotr
/]
LR .

T

 cpysksLineer fifod G
waztar o earmyksiop

L andathers wilh

. aiiary binning

S Gameeia
e]
/' GavResCoNINCUDUS IS e -
/ ¢ mavRestconnuouz
P —r .. Process
GeibleanFe=Fathi) - . 8 AlcngStepDal |
GeideanLileTimey | | N G4VProcess e GetCanbruousStepLimi |+
tepDcl) Trm—— - AlcrgStepDol | o . AFetDol)
. AlorngStepDok (] ~—m MlongStepGetPhysicalineractiorLength| dteanLifeTire (-
GetCantinousSteplini) - A=tk) ! s
W Sl MR=CeAPhysicallnteracticel angh |
T PsiStepDok| | i o .
N P bisiStepGeiPhysialineractiocl sngth(T G4VRestProcess
i e , . o - Gethean it Time{ |
/ oawContnousDiscrets ' w P - hicenk i
AlorgStepDel | - k : -
GetMeanFreePaih())
. PostSepOoi) s - W
GtCantiniouxStepl k() /' GavResiDiscreleFrocess S e - . .
o » AFe=ADol) | @svcontnucusprocess T T .
' GetheanlifeTime|) / AloogSiep(cl) S ' @4vDiscreleProcess
) GeildaanF resPath(| 4 GetCortir imi) . 1
T FosiStepliol | [PorSiepeit,)
‘' @dnEnergyLoss \) . .
BbongStepDalt |+ L - B o .
Peat! p%jom W - ‘\ P W | »
- GetConlinucusSiep imi) -3 % - \
GetheenFreePath() |
e -
Y
 masnumplescananng - _ I3 -t e o e 7 G4Comptonscatiening
WhongStepDol] | K on . pl G4Decay GdTransportation PastDolif]
PosiStepDalti | L PastStep Dok | AtRestDalti Decaykl | " GatCominuousStepLimi)] © GetheanFrecPathi |
__GetCortnuoceSteplimitl) (| GetteanfrecPath() | - cateapalt) | GeMenrecPai() (L T plcegStepDahl) .
TrueGeom Transformalion! | . - GelMeanLifeTime{) . GeilifeTime{) -,
 GetheanFreePath(] | “GetMeanF esPath] |)

Figure2.5. Management of Physics Processes

[Status of this chapter]

27.06.05 section on design philosophy added by D.H. Wright
Dec. 2006 Conversion from latex to Docbook verson by K. Amako

2.6. Hits and Digitization
2.6.1. Design Philosophy

In Geant4 a hit is a snapshot of a physical interaction or an accumulation of interactions of atrack or tracksin a
““sensitive" detector component. A digitization, or digit, represents a detector output, such asan ADC/TDC count
or atrigger signal. A digit is created from one or more hits and/or other digits.

Design and Function
of Geant4 Categories

Given the wide variety of Geant4 applications, ways of describing detector sensitivity and the quantities to be
stored in the hits and digits vary greatly. This category therefore provides only abstract classes for both detector
sensitivity and hitg/digits. It also provides tools for organizing the hitg/digits into collections.

2.6.2. Class Design

» G4SensitiveDetector M anager - alist of G4SensitiveDetectors.

e G4HitsStructure - a tree-like structure of G4Hit collections. Each branch represents the hits in given sub-
detector. For example, thefirst level of branches may consist of atracker, ECAL, and HCAL, while the second
level, in HCAL, consists of the barrel and endcaps. Finally the barrel may have phi-dlices, Z-dices, etc.

» G4V SensitiveDetector - an abstract class of all of sensitive volumes.

» G4HitsCollection - acollection of hits. Instantiates an RWCollection class.

e G4VHit - thisclass has al the information about a particular hit caused by a single step.

» G4VDigitizer - the class of objects which transform the hits deposited by particlesinto digitizations.

» G4DigitizerManager - the (single) object dispatching common messages to individual digitizers.

» G4VDigi - an abstract (base) class for al G4 digitizations. This could be data as simple as a singe byte, or as
complex as an Ntuple.

» G4DigiStructure - digitizations are organized as a structure, which could be anything between a single value
and an Ntuple.

The object-oriented design of the 'hit' related classes is shown in the following class diagrams. The diagrams are

described in the Booch notation. Figure 2.6 shows the general management of hit classes. Figure 2.7 shows the
OO design of user-related hit classes. Figure 2.8 shows the OO design of the readout geometry.

G4SDManager

- . ,) G4EveniManage
. ‘GASDmessangar g, mansger ittt | 3 i ’ e
. T - addNeDetec ; .
.qut;r:ressen ' e) tomEesbnegeetd C GAEvent
. - - P ot " _— B
} F S ’ (lrom Eventhla i
{from Intercom) P addl_hitsCollection |
KA ; A . *.‘l»em get_HColThisEvent(|
oo e, GAHCtabisL 1 f ‘ .
GASteppingMan’ et /] tedTop .)
ager S e ! / \ - Hes
“~. {from Tracking) /
G4LegicalVolume \ /' marpger 7 GAHCofThisEvent
(fram Geametry] S, ht /) i, add_hitsCollection()
) \ get HX{) .
gel_capacity|)
\] get_numberOiCallecticrrs(]
. A)
\ e g detector . i W
SensitiveDstactor S & P : ¢
. R “~{in I
e : G4V SensitiveDatector . avgnt
Gastp % .
(fram Tracking) ; .
(- 7 E4VHisCallection
1 || SOname - G4Siring
o aGollection —— || SDpathhame : G4Sting
N |1 cellectionName : GiString
- GAVAsadOut [- W W
. Geometry & o1 e) E
— : GHVHIt Tin
¥ draw(]
printi)

Figure 2.6. Overview of hit classes management

alection

:1.'
W ey .
i P L TN o e
\ - calaiimeter HiisCale'
L
. - ! AWTValCrderedye ™
L | | . cior
/ AL Ry - ram FaeWer
" calarimeter = ’ L
i harbeisiate = T
4 - anfrmay ¢ " Cheice out of thess tan
e g { i e i,
7 Gafllacater ./ AWTPOrderedve
rom Gioeatz) . . . ctor
) el . £, om Foguamar) |
. ‘counteHisCollection " courterHitsCollect -, H
oounter caurterHi P

Figure2.7. User hit classes

10

Design and Function
of Geant4 Categories

/' G4VSansitiveDs
. tactor 4

.

0.1
. G4VRsadOutG
d eometry
) " build[|
|nc:|udetls: T e & _.__.
A W =

excLudéList B g
' '- ~7 G4GRSVoume

k) G4$ensili\reﬁ|f " IS firam Geometry)
umeList ! “a.n - i
: P TT P I
N i O G4GRSSold
- G4VPhysicalg.n . " from Geomelry) |
L Volume | | o,]
 [Fromy GEeemetry). { P . '\
r“@fx“""" e [T — L S
o GdlogicalVol | e GAVTouchable .

ume

. i (e Geometry)
fFrorm Geormetry)

Figure 2.8. Readout geometry

[Status of this chapter]

27.06.05 section on design philosophy added (from Geant4 general paper) by D.H. Wright
Dec. 2006 Conversion from latex to Docbook verson by K. Amako

2.7. Geometry
2.7.1. Design Philosopy

The geometry category provides the ability to describe a geometrical structure and propagate particles efficiently
through it. Thisis done in part with the aid of two central concepts, the logical and physical volumes. A logical
volume represents a detector element of a given shape which may contain other volumes, and which may have
other attributes. It has access to other information which is independent of its phyisical location in the detector,
such asmaterial and sensitive detector behavior. A physical volume representsthe spatial positioning or placement
of the logical volume with respect to an enclosing mother (logical) volume. Thus a hierarchical tree structure of
volumes can be built with each volume containing smaller volumes (which may not overlap). Repetitive structures
can be represented by specialized physical volumes, such as replicas and parameterized placements, sometimes
resulting in alarge savings in memory.

In Geant4 the logical volume has been refined by defining the shape as a separate entity, called a solid. Solids
with simple shapes, like rectilinear boxes, trapezoids, spherical or cylindrical sections or shells, each have their
properties coded separately, in accord with the concept of Constructed Solid Geometry (CSG). More complex
solids are defined by their bounding surfaces, which can be planes, second-order surfaces or higher-order B-spline
surfaces, and belong to the Boundary Representations (BREP) sub-category.

Another way to build solidsis by boolean combination - union, intersection and subtraction. The elemental solids
should be CSGs.

Although adetector is naturally and best described as by ahierarchy of volumes, efficiency isnot critically depen-
dent on this. An optimization technique, called voxelization, allows efficient navigation evenin “flat" geometries,
typical of those produced by CAD systems.

2.7.2. Class Design

» G4GeometryManager - responsible for managing ~"high level" objects in the geometry subdomain, notably
including opening and closing (""locking") the geometry, and creating/deleting optimization information for
G4Navigator. The classisa"singleton”.

» GA4L ogicalVolumeStor e - acontainer for optionally storing created logical volumes. It enables traversal of al
logical volumes by the Ul/user/etc.

11

Design and Function
of Geant4 Categories

G4L ogicalVolume - represents a leaf node or unpositioned subtree in the geometry hierarchy. It may have
daughtersascribed toit, and isalso responsiblefor retrieval of the physical and tracking attributes of the physical
volume that it represents. These attributes include solid, material, magnetic field, and optionally user limits,
sensitive detectors, etc. Logical volumes are optionally entered into the G4L ogicalVVolumeStore.

G4M agneticField - a class responsible for the magnetic field in each volume, including the calculation of
particle trajectories along curved paths. In cases where the geometry step limits the particle's step, the distance
calculated is guaranteed to be the distance to a volume boundary.

G4Navigator - a class used by the tracking management, able to obtain/cal culate tracking-time geometrical
information such as distance to the next volume, or to find the physical volume containing a given point in
the world reference system. The navigator maintains a transformation history and other information used to
optimize the tracking time performance.

G4NavigationHistory - responsible for maintenance of the history of the path taken through the geometrical
hierarchy. It is principally a utility class for use by G4Navigator.

G4NormalNavigation - a utility class for navigation in volumes containing only G4PV Placement daughter
volumes.

G4Par ameterisedNavigation - autility classfor navigation in volumes containing asingle G4PV Parameterised
volume for which voxels for the replicated volumes have been constructed.

G4VoxelNavigation - a utility class for navigation in volumes containing only G4PV Placement daughter vol-
umes for which voxels have been constructed.

G4ReplicaNavigation - a utility class for navigation in volumes containing a single G4PV Parameterised vol-
ume for which voxels for the replicated volumes have been constructed.

G4PhysicalVolumeStore - a container for optionally storing created physical volumes. It enables traversal
of all physical volumes by the Ul/user/etc. All solids should be registered with G4PhysicalV olumeStore, and
removed on their destruction. It isintended principally for the Ul browser.

G4V PhysicalVolume - avolume positioned within and relative to agiven mother volume, and al so represented
by agiven logica volume. They are optionally entered into the G4PhysicalV olumeStore.

G4PVPlacement - a physical volume corresponding to a single touchable detector element, positioned within
and relative to a mother volume.

G4PVIndexed - a volume able to perform simple changes to its shape (corresponds to GSPOSP), and repre-
senting a single touchable detector element.

G4PVReplica - aphysical volume representing many identically formed touchabl e detector elements, differing
only intheir positioning. The elements' positions are determined by means of asimpleformula, and the elements
completely fill the containing mother volume.

G4PVParameterised - a physical volume representing many touchable detector elements differing in their
positioning and dimensions. Both are calculated by means of a G4V Parameterisation object. Each element's
positioniscal culated as per G4PV Replica, and each element's shape can be modified by means of auser supplied
formula

G4VPVParameterisation - a parameterisation class able to compute the transformation and, indirectly, the
dimensions of parameterised volumes, given areplication number.

G4SmartVoxeProxy - aclass for proxying smart voxels. The class represents either a header (in turn refering
to more VoxelProxies) or a node. If created as a node, calls to GetHeader cause an exception, and likewise
GetNode when a header.

G4SmartVoxelHeader - represents a single axis of virtual division. Contains the individual divisions which
are potentially further divided along different axes.

G4SmartVoxelNode - asinglevirtual division, containing the physical volumesinsideits boundaries and those
of its parents.

G4V oxelLimits - represents limitation/restrictions of space, where restrictions are only made perpendicular to
the cartesian axes.

G4RotationM atrixStore - a container for optionally storing created G4RotationMatrices.

G4SolidStor e - acontainer for optionally storing created solids. It enablestraversal of al/any solids by the Ul/
user/etc. The classisa"singleton"”.

G4V alid - position independent geometrical entities. They have only “shape’, and encompass both CSG and
boundary representations. They are optionally entered into the G4SolidStore. This class defines, but does not
implement, functions to compute distances to/from the shape. Functions are also defined to check whether a
point is inside the shape, to return the surface normal of the shape at a given point, and to compute the extent
of the shape.

G4V SweptSolid - asolid created by performing a 3D transformation on afinite planar face.
G4HalfSpaceSolid - asolid created by the boolean AND of one or more half space surfaces.

12

Design and Function
of Geant4 Categories

* G4BREPSolid - asolid created by an abitrary set of finite surfaces.

» G4VTouchable - aclassthat maintains a ~"reference" on a given touchable element of the detector - a kind of
bookmark. It enables a given detector element to be saved during tracking (in case of booleans/user code/etc.)
and the corresponding G4PhysicalVolume retrieved later, with its “state" information (path through the tree)
optionally restored so that navigation can be restarted. G4Touchables provide fast access to the transformation
from the global reference system to that of the saved detector element.

» G4TouchableHistory - object representing a touchable detector element, and its history in the geomtrical hi-
erarchy, including its net resultant local->global transform.

* GAGRSSolid} - object representing a touchable solid. It maintains the association between a solid and its net
resultant local-to-global transform.

» G4GRSVolume- object representing atouchabl e detector element. It maintains associ ations between aphysical
volume and its net resultant local-to-global transform.

» G4TransformStore - a container for optionally storing created G4AffineTransform objects. It is responsible
for storing and providing access to transformations that are constant at tracking time.

* G4AffineTransform - aclass for geometric affine transformations. It supports efficient arbitrary rotation and
transformation of vectors and the computation of compound and inverse transformations. A ““rotation flag" is
maintained internally for greater computational efficiency for transforms that do not involve rotation.

» G4UserLimits - responsible for user limits on step size, ascribable to individual volumes.

Figure 2.9 shows a general overview, in UML notation, of the geometry design. A detailed collection of class
diagrams from the geometry category is found in the Appendix.

-
-
s
L3 pes

s

—
i
5.
.
+.
+-
pes
e

oad

Figure 2.9. Overview of the geometry

2.7.3. Additional Geometry Diagrams

Additional diagrams for the object-oriented design of the '‘geometry’ related classes are included here.

Figure 2.10 shows the class diagram for smart voxels. Figure 2.11 shows the class diagram for the navigator.

13

Design and Function
of Geant4 Categories

GSmartVoxelPraxy

WG4 Smar tVone Proxy (1

GiSmartVexslHzadsr

Gafalices : GiProxgVector

Gdint
(Eron global)

Figure2.10. Classdiagram for smart voxels

Gilavigatos
(frem navigation|

GetWor LdValum= (]

>
> Locat=GlabalPoinkWithinyolone ()
> BesetHizrarchyindlocats()

’] -

Figure 2.11. Classdiagram for the navigator

[Status of this chapter]

27.06.05 subsection on design philosphy (from Geant4 general paper) added by D.H. Wright

2.8. Electromagnetic Fields

The object-oriented design of the classes related to the electromagnetic field is shown in the class diagram of
Figure 2.12. The diagram is described in UML notation.

14

Design and Function
of Geant4 Categories

Figure2.12. Electromagnetic Field

2.9. Particles
2.9.1. Design Philosophy

The particles category implements the facilities necessary to describe the physical properties of particles for the
simulation of particle-matter interactions. All particles are based on the G4ParticleDefinition class, which de-
scribes basic properties such as mass, charge, etc., and aso alows the particle to carry alist of processesto which
itissengitive. A first-level extension of this class defines the interface for particlesthat carry cutsinformation, for
examplerange cut versus energy cut equivalence. A set of virtual, intermediate classesfor leptons, bosons, mesons,
baryons, etc., allows the implementation of concrete particle classes which define the actual particle properties
and, in particular, implement the actual range versus energy cuts equivalence. All concrete particle classes are
instantiated as singletons to ensure that al physics processes refer to the same particle properties.

2.9.2. Class Design

The object-oriented design of the'particles related classesis shown in the following class diagrams. The diagrams
are described in the Booch notation. Figure 2.13 shows a general overview of the particle classes. Figure 2.14
shows classes related to the particle table. Figure 2.15 shows the classes related to the particle decay table.

15

Design and Function
of Geant4 Categories
it ot
"I - g:gtﬂ { ... and many cthers

© GAMusnPlus) GAMuanMinus.
GalCutf) GietiCuts(|
FianPhes(| B carin
SelCuiel) ks
J -

Mucnbinus;) |
SetCuts[] ¢
- ot

" G4Geantino GCutsl
Gearting{ | MuurFl"IusP]

| Y BelCus()

P Tk

.

7 Gavlepton

" G4VBaryon
o GiLomsVect:

/' G4LossTable

! G4VMesDr|-
irea{ |

e

e
* CMaterial Ta GAParticleWiths —
{framn Materials) SetCu(] _ thelesstsbla
2. BikiPhysicsTabel §) —
| CaleEnergyCuts | e _— =
- W‘m + G4RangeVector e R
EellenghCurd ; : L -
N ol EreyCuat | GetValue{) " G4LossVactar
P po LIRS Futdalus] | p 4
X o . L,]
. G4Allocator J PutVakiel)
..o Giokels) | ; T I ;
/ G4ParticleDefinition e
P || hePDGMass : Gloouble . CaProcass "
K - ., |1 thePartclaharn : GaSting * 1 1 - BdProcess |
./ G4DyramicParticle e PDGEncoding - Gtinl 8 —bmrrcemtieme— | Wanager |
Dimctiont) 1 iy PyeceProsess)
GetTatalEnengyl | i
GeiPobrizatiot) | I
\ | Y - e
Y 4t * e
LR] hePaftel Table
R JL theDacyyTables s .
e s 0.1 . | R o
e L™ T GaParticlsTabls ™
- 1 s i - .
o GADecayFroducts /" G4DacayTable & {
. G4Particle PushProducts() - SelsctADecayCharmel]) H
: (1! —t
Boastf)) e, e \ B

Figure 2.13. Particle classes
G4ParticleTable / BAParticleMessenger ™,
entrigs|) sathl awValual |
Q'_ getCumentialual |
m .

! find Particle)
findAntiParticlel) i
insert| })
\
'._.

', GetParticleTablal | !
s I N

_%‘1----. .‘\\-
ﬂtqrﬁtor fchthTary
;! W
w1 .?_G4Strir_|:_ A

0. G4Particle

_ Definition |

1
- G4PTbleDi |,
“... ctionary ®—— L

/G4PThiDictio”
“.__naryherator |

B L
S AWTValHa |

“RWTPtrSlis & TVaHa,
.._tDictionary' shDictionar.
“rom RWToalsr | from RWTack)

G4DecayTable

*,KP. VP

]

e e Fiaiie : SelactADecayChannel, |

GA4Dynamic | . GLorentz o Gtbartele | It}

Patticle | FRotation ., L perant-e, A
i 4 “Trem Glakak) A
1 hY | | i
parert B
) y L Tl channels g ypecaych)
G4VDacayChanral - / . ‘e
GADecayProducts Beragil] j G4DecayChannsl T

CetBR) K ¢ Wactor < RWTPtrSor
CelPareri . » tedVactor |
GeiDaughter) g.n L Tham RWTack)

- G4Allocator |
GetPareriParticle{)

... _tircen Globals) |

W -
an T
7 G4PhaseSpacsDecay "

Y i
s
b u" e
./ GADecayProducts ™! S o=
:“D\:isl;rlsdmsn:_ 5 / b ./ G#MuonDecayChannal
nex : Gt DecayProductsL siEldment T, . Decaylt 4
: ‘ ot R Ghareel
- ¢ (irom PhaysicsProcess] k!
.| Decagtl) | ?’,:g:&z:;:” | ...and many athers
Y o ThreeBodyDacayli] .
P N | ManyBerlyDiecayl §

Figure 2.15. Particle Decay Table

[Status of this chapter]
27.06.05 section on design philosophy added (from Geant4 general paper) by D.H. Wright
16

Design and Function
of Geant4 Categories

Dec. 2006 Conversion from latex to Docbook verson by K. Amako

2.10. Materials
2.10.1. Design Philosophy

The design of the materials category reflects what exists in nature: materials are made of a single element or a
mixture of elements, and elements are made of a single isotope or a mixture of isotopes. Because the physical
properties of materials can be described in a generic way by quantities which can be specified directly, such as
density, or derived from the element composition, only concrete classes are necessary in this category.

The material category implements the facilities necessary to describe the physical properties of materials for the
simulation of particle-matter interactions. Characteristics like radiation and interaction length, excitation energy
loss, coefficients in the Bethe-Bloch formula, shell correction factors, etc., are computed from the element, and
if necessary, the isotope composition.

The material category also implements facilities to describe surface properties used in the tracking of optical
photons.

2.10.2. Class Design

The object-oriented design of the 'materials related classesis shownin the classdiagram: Figure 2.16. Thediagram
is described in the Booch notation.

/" RWTPIOr

¢ daeredVact »
'Jrom AW Toalz)
o)
e | S . ' Galzotope
./ GaMateral // Gé4Element % Y Table
“ B R | e m
a oM .| - |
1 I Y i
theMateralTabie theElementTable thelsotape
on B ! A 'Il
. df—— RN L
Gahdaterial v S @4Element / Gé#laotaps "
JddElemeri() [ot " DumpTabke(]
A . Damelabir) | S L
1 P
! n -7 R
= , / 3 i
theElamants vy thelsotopes i
st . R .
-'\Gll-E.I.elmem e -
/ i Gélsctape)
Vector » F Wactor
A R AT
:) -
Ao
S RWTPirve
char /

" ffrerm AWTaclz)
Figure 2.16.

[Status of this chapter]

27.06.05 section on design philosophy add (from Geant4 general paper) by D.H. Wright
Dec. 2006 Conversion from latex to Docbook verson by K. Amako

17

Design and Function
of Geant4 Categories

2.11. Global Usage
2.11.1. Design Philosophy

The global category covers the system of units, constants, numerics and random number handling. It can be con-
sidered a place-holder for "general purpose” classes used by all categories defined in Geant4. No back-dependen-
cies to other Geant4 categories affect the "global" domain. There are direct dependencies of the global category
on external packages, such as CLHEP, STL, and miscellaneous system utilities.

Within the management sub-category are “"utility" classes generally used within the Geant4 kernel. They are, for
the most part, uncorrelated with one another and include:

» G4Allocator

e G4FastVector

» G4ReferenceCountedHandle

» G4PhysicsVector, GALPhysicsFreeVector, G4PhysicsOr deredFreeVector
* GATimer

» G4UserLimits

» G4UnitsTable

A general description of these classesisgivenin section 3.2 of the Geant4 User's Guidefor Application Developers.

In applications where it is necessary to generate random numbers (normally from the same engine) in many dif-
ferent methods and parts of the program, it is highly desirable not to rely on or require knowledge of the global
objects instantiated. By using static methods via a unique generator, the randomness of a sequence of numbers
is best assured. Hence the use of a static generator has been introduced in the original design of HEPRandom as
aproject requirement in Geant4.

2.11.2. Class Design

Analysisand design of the HEPRandom modul e have been achi eved following the Booch Object-Oriented method-
ology. Some of the original design diagramsin Booch notation are reported below. Figure 2.17 isageneral picture
of the static class diagram.

* HepRandomEngine - abstract class defining the interface for each Random engine. Its pure virtual methods
must be defined by its subclasses representing the concrete Random engines.

* HepJamesRandom - class inheriting from HepRandomEngine and defining a flat random number generator
according to the algorithm described in "F.James, Comp.Phys.Comm. 60 (1990) 329". This classisinstantiated
by default as the default random engine.

» DRand48Engine - class inheriting from HepRandomEngine and defining a flat random number generator ac-
cording to the drand48() and srand48() system functions from the C standard library.

» RandEngine- classinheriting from HepRandomEngine and defining aflat random number generator according
to the rand() and srand() system functions from the C standard library.

* RanluxEngine- classinheriting from HepRandomEngine and defining aflat random number generator accord-
ing to the algorithm described in "'F.James, Comp.Phys.Comm. 60 (1990) 329-344" and originally implemented
in FORTRAN 77 as part of the MATHLIB HEP library. It provides 5 different "luxury" levels[0..4].

* RanecuEngine - class inheriting from HepRandomEngine and defining a flat random number generator ac-
cording to the algorithm RANECU originally written in FORTRAN 77 as part of the MATHLIB HEP library.
It uses atable of seeds which provides uncorrelated couples of seed values.

* HepRandom - the main class collecting all the methods defining the different random generators applied to
HepRandomEngine. It is a singleton class which al the distribution classes derive from. This singleton isin-
stantiated by default.

* RandFlat - distribution class for flat random number generation. It also provides methods to fill an array of
flat random values, given its size or shoot bits.

* RandExponential - distribution class defining exponential random number distribution, given a mean. It also
provides a method to fill an array of flat random values, given its size.

» RandGauss - distribution class defining Gauss random number distribution, given amean or specifying also a
deviation. It also provides a method to fill an array of flat random values, given its size.

18

Design and Function
of Geant4 Categories

* RandBreitWigner - distribution class defining the Breit-Wigner random number distribution. It also provides
amethod to fill an array of flat random values, given its size.

» RandPoisson - distribution class defining Poisson random number distribution, given a mean. It also provides
amethod to fill an array of flat random values, given its size.

N RandEngine T
R T) s ine
DRand4B8Engine ¢ NatAurayi | S, HanIIIJL:II[EIrgme
(| S ! v
Flartrray(| f ., setSesds() i fathirray
ulS::;El | 'y oor) e xg::dd[l
— . . o Seeds] | 1 s xlﬂ r‘Is[l
o T ol Mo el 0 T
+ HeplamesRandom - ; '\;\‘. L _*- - e - e
< Hlati) P - Y e
Nathrray () HepRandomEngine “ r F‘EHGNCUEI'Q“'IE
::«g:dd;:(); — o fd“ﬁajﬂ] N:Lﬂ:::aill
fonp o~ - getfecd] | e sﬁgﬁ)
- petSeeds] | o
etSeed)| | | L] ..
seiSeeds] | { L
[1.r
W -
R
theEngine
HepRandom B
Flat[)
HatArray(|
qetTheEngine])
gt TheGeneratr |
gelTheSesd()
TheSe
wﬁr;u:&ﬁ.)s“
" =T heEngine()
e sefTheSesd(|
setTheSees))
/_,'- 1]
RandFlat I T S
ﬁ.er:l'fr[:l /’.'x e M, "¢ RandPoisson
- r;l y ok \ E e
rini / ! ", . =
. sheal | \ i | AY ! shoall |
sheathray) i v | . 5I|D-c|1An:|ar(J
shoatint} S e [=, frcAmayl |
ol i g e R
T T M FiandGauss '. AT
3 FlandE.xponenlial 5:3;:“)] 7 RandBreitWigner
::"“ AN shecthmay| | — firel)
d'n:ntn.:rtrlaiq 1 1 e 'imﬂrwr” Vi shest] |
T T S S e
! fanf X

Figure 2.17. HEPRandom module

Figure 2.18 is a dynamic object diagram illustrating the situation when a single random number is thrown by the
static generator according to one of the available distributions. Only one engine is assumed to active at atime.

Just one of the following

_Harlt:gpm Engines at a tims Jr/- — _
is active : A o
- Hap.larnesﬂandom (default) Ao HepRandomEngine ™,
— DRand4BEngine - ra
- RandEngina s o/
- RanluxEngine S |
— RanecuEngine - |
kY J
& gl
2 satSaed (lng, ":,"/ il
A
1: s TheEngne _/’
I - theEngine
/' RandGauss N A i) -
. J thaGenamtor || A T e
e | e P T o Hel.lr_:gnEI;?ii Y
— e — B 1T:shoot |
Y -~ oz ff . Lq_____ 12:nat] e
5 shoat (] s aGeneratar : i) \
~——ay HepRandom .- !
-
{ f 15 1Rt ()
_,' - X . ~—— - - \ - ™ ,'I
RandPoissan | _— | - .
ll\ _/J‘- o “G-_/ T 14; sheat ()
rr FEH T I
B onat i S N
! i R ey —
: hy 4 AandExpon

Iy, . . ential
£ ety L
g o e, 1
/ RandFlat) R

Figure 2.18. Shooting via the generator

19

Design and Function
of Geant4 Categories

Figure 2.19 illustrates a random number being thrown by explicitly specifying an engine which can be shared by
many distribution objects. The static interface is skipped here.

Py

" localEngine
Iy £
1:flat () . -=9:fiat()
. - \-“\\?: . ” -m .fil'e._ o~
e flat () (St flat i), %/ PoissonDi
- - fire / stribution
o () ™y
/" FlatDistrib 0y ate() 80 0) 7 pynisiiby ™
ution P e e S tion
/' ExpDistrib ™, GaussDist

ution 7 ribution

Figure 2.19. Shooting via distribution objects

Figure 2.20 illustrates the situation when many generators are defined, each by a distribution and an engine. The
static interface is skipped here.

T

<

Engines ™ /|

y \
A:nani] f, '1. w:Nat ||
“_* - -.l': il o s~
a1t 5:Mat || \ . PDi_SSD_ﬂDi-""
gl e [Stribution
o e A 2 shenl S shont W\ B shont \ e
/ FlatDistrib .y P / BWDistrib
(uticn A e — ution
g |/ ExpDistrib ™/ GaussDist) .

ution ¢ ribution ¢ \ e
— [: -

Figure 2.20. Shooting with arbitrary engines

For detailed documentation about the HEPRandom classes see the CLHEP Reference Guide(http://cern.ch/clhep/
manual/RefGuide) or the CLHEP User Manua(http://cern.ch/clhep/manual/UserGuide).

Informations written in this manual are extracted from the original manifesto distributed with the HEPRandom
package (http://cern.ch/clhep/manual /UserGuide/Random/Random.html).

HEPNumerics

The HEPNumerics module includes a set of classes which implement numerical agorithms for general use in
Geant4. The User's Guide for Application Devel opers contains a description of each class. Most of the algorithms
were implemented using methods from the following books:

» B.H. Flowers, "An introduction to Numerical Methods In C++", Claredon Press, Oxford 1995.
« M. Abramowitz, |. Stegun, "Handbook of mathematical functions', DOV ER PublicationsINC, New Y ork 1965 ;
chapters 9, 10, and 22.

HEPGeometry

Documentation for the HEPGeometry module is provided in the CLHEP Reference Guide(http://cern.ch/clhep/
manual/RefGuide) or the CLHEP User Manual (http://cern.ch/clhep/manual/UserGuide).

[Status of this chapter]

01.12.02 minor update by G. Cosmo

20

Design and Function
of Geant4 Categories

18.06.05 introductory paragraphs added and minor grammar changes by D.H. Wright
Dec. 2006 Conversion from latex to Docbook verson by K. Amako

2.12. Visualisation
2.12.1. Design Philosophy

Thevisualisation category consists of the classesrequired to display detector geometry, particle trajectories, track-
ing steps, and hits. It also provides visualisation drivers, which are interfaces to external graphics systems.

A wide variety of user requirements went into the design of the visualisation category, for example:

* very quick response in surveying successive events,

« high-quality output for presentation and documentation,

« flexible camera control for debugging detector geometry and physics,

* selection of visualisable objects,

* interactive picking of graphical objects for attribute editing or feedback to the associated data,
« highlighting incorrect intersections of physical volumes,

 co-working with graphical user interfaces.

Because it is very difficult to respond to all of these requirements with only one built-in visualiser, an abstract
interface was devel oped which supports several complementary graphics systems. Here the term graphics system
means either an application running as a process independent of Geant4 or a graphics library to be compiled with
Geant4. A concrete implementation of the interface is called a visualisation driver, which can use a graphics
library directly, communicate with an independent process via pipe or socket, or smply write an intermediate file
for a separate viewer.

2.12.2. The Graphics Interfaces

» G4VVisManager: All user code writes to the graphics systems through this pure abstract interface. It contains
Draw methods for all the graphics primitivesin the graphics_reps category (G4Polyline, G4Circle, etc.), geom-
etry objects (through their base classes, G4V Solid, G4PhysicalVVolume and G4L ogicalVVolume) and hits and
trajectories (through their base classes, G4V Hit and G4V Trajectory).

Sincethisisan abstract interface, all user code must check that there exists aconcreteinstantiation of it. A static
method is provided, so atypical user code fragment is:

GAWi sManager * pWi sManager = AW sManager : : Get Concr et el nst ance() ;
i f (pVWVisManager) ({
pWi sManager - >Drawm{ ACircl e. . .

Note that this allows the building an application without a concrete implementation, for example for a batch
job, even if some code, like the above, is still included. Most of the novice examples can be built this way if
G4VIS_NONE is specified.

The concrete implementation of this interface is hereafter referred to as the visualisation manager .

» G4VGraphicsScene: The visualisation manager must also provide a concrete implementation of the subsidiary
interface, G4V GraphicsScene. It isonly for use by the kernel and the modeling category. It offers direct access
to a “scene handler” through a reference provided by the visualisation manager. It is described in more detail
in the section on extending the toolkit functionality.

The Geant4 distribution includes implementations of the above interfaces, namely G4VisManager and
G4V SceneHandler respectively, and their associated classes. These define further abstract base classes for visu-
alisation drivers. Together they form the Geant4 Visualisation System. A variety of concrete visualisation drivers
arealsoincluded in the distribution. Details of how to implement avisualisation driver are given in Section 3.6. Of

21

Design and Function
of Geant4 Categories

coursg, it isaways possible for a user to implement his or her own concrete implementations of G4V VisManager
and G4V GraphicsScene replacing the Geant4 Visualisation System altogether.

2.12.3. The Geant4 Visualisation System

The Geant4 Visualisation System consists of

e G4VisManager: Animplementation of the G4VVisManager interface. It manages multiple graphics systems
and defines three more concepts -- the scene (G4Scene), the scene handler (base class G4V SceneHandler,
itself a sub-class of G4V GraphicsScene) and the viewer (base class G4VViewer) -- see below. G4VisManager
is a singleton and an abstract class, requiring the user to derive from it a concrete visualisation manager
(G4VisExecutive is provided -- see below). Roles and structure of the visualisation manager are described in
Chapter 8 of the User's Guide for Application Developers.

» G4VisExecutive: A concrete visualisation manager that implementsthe virtual functions RegisterGraphicsSys-
tems and RegisterModel Factories. These functions must be in the users domain, since the graphics systems
and models that are instantiated by them are, in many cases, provided by the user (graphicslibraries, etc.). It is
therefore implemented as a .hh-.icc combination that is designed to be included in the users code. Of course,
the user may write his or her own.

» G4Scene The scene is a list if models for physical volumes, axes, hits, trgjectories, etc. - see Section Sec-
tion 2.12.4. They are distinguished according to their lifetime -- ~“run-duration” for physical volumes, etc.,
““end-of-event" for hits and trajectories, etc. The end-of-event models are only to be used when the Geant4 state
indicates the end of event has been reached. The scene has an extent (G4VisExtent), which is updated by the
scene when a new model is added (each model itself has an extent), and a *“standard" target point; these are
used to define the standard view -- see below. In addition, the scene keeps flags which indicate whether end-
of -event objects should be accumulated or refreshed for each event or run.

» G4VGraphicsSystem: Thisis an abstract base class for scene handler and viewer factories. It is used by the
visualisation manager to create scene handlers and viewers on request.

» G4VSceneHandler: A sub-classof G4V GraphicsScene, itself an abstract base classfor specific scene handlers,
whose job is to convert the scene into graphics-system-specific code for the viewer. For example, the scene
handler may create agraphical database, taking care to separate run-duration (persistent) and end-of-event (tran-
sient) information (thisis described further in Section 3.6.1.6.

e G4VViewer: An abstract base classfor specific viewers. Itsjob isto create windows or files and identify where
and how the final view should be rendered. It has view parameter s (G4ViewParameters) which specify view-
point direction, type of rendering (wireframe or surface), etc. It is the view's responsibility, noting the scene's
extent and target point, to choose a camera position and magnification that ensures that the scene is automati-
cally and comfortably rendered in the viewing window. Thisisthen the standard view, and any further opera-
tions requested by the user - zoom, pan, etc. - are relative to this standard view. The class G4ViewParameters
has utility routinesto assist this procedure; it is strongly advised that toolkit developerswriting aviewer should
study the G4ViewParameters class, whose header file contains much useful information (also preserved in the
Software Reference Manual).

The viewer is messaged by the vis manager when the user issues commands, such as/ vi s/ vi ewer/r e-
f r esh. Thisinvokes methods such as SetView, ClearView and DrawView. A detailed description of the call
sequencesisgiven in Section 3.6.1.2- Section 3.6.1.5.

Note there is no restriction on the number or type of scene handlers or viewers. There may be severa scene
handlers processing the same or different scenes, each with several viewers (for example, the same scene from
differing viewpoints).

By defining a set of three C++ classes inheriting from the virtual base classes - G4V GraphicsSystem,
G4V SceneHandler and G4V Viewer - an arbitrary graphics system can easily be plugged in to Geant4. The
plugged-in graphics system is then available for visualising detector simulations. Together, this set of three con-
crete classesis called a "visualisation driver". The DAWN-File driver, for example, is the interface to the Fukui
Renderer DAWN, and isimplemented by the following set of classes:

1. GADAWNFILE : public G4V GraphicsSystem for creation of the scene handlers and viewers
2. GADAWNFILESceneHandler : public G4V SceneHandler for modeling 3D scenes

22

Design and Function
of Geant4 Categories

3. GADAWNFILEView : public G4V View for rendering 3D scenes

Severa visualisation drivers are distributed with Geant4. They are complementary to each other in many aspects.
For details, see Chapter 8 of the User's Guide for Application Developers.

2.12.4. Modeling sub-category

* G4VModd - abase class for visualisation models. A model is a graphics-system-independent description of
a Geant4 component.

The sub-category visualisation/modeling defines how to model a 3D scene for visuaisation. The term "3D
scene" indicates a set of visualisable component objects put in a 3D world. A concrete classinheriting from the
abstract base class G4VModel defines a"mode", which describes how to visualise the corresponding compo-
nent object belonging to a 3D scene. G4AM odelingParameters defines various associated parameters.

For example, G4PhysicalVVolumeModel knows how to visualise a physical volume. It describes a physical vol-
ume and its daughters to any desired depth. G4HitsModel knows how to visualise hits. G4TrajectoriesM odel
knows how to visualise trgjectories.

Themain task of amodel isto describeitself to a3D scene by giving aconcrete implementation of the following
virtual method of G4VModel:

virtual void DescribeYoursel fTo (AVG aphi csScene&) = 0;

The argument class G4V GraphicsScene is a minimal abstract interface of a 3D scene for the Geant4 ker-
nel defined in the graphics_reps category. Since G4V SceneHandler and its concrete descendants inherit from
G4V GraphicsScene, the method DescribeY ourselfTo() can pass information of a 3D scene to a visualisation
driver.

It is easy for atoolkit developer of Geant4 to add a new kind of visualisable component object. It is done by
implementing a new class inheriting from G4VModel.

» G4VTrajectoryModel - an abstract base class for trgjectory drawing models.

A trgjectory model governs how an individua trgectory is drawn. Concrete models inheriting from
G4V TrgectoryModel must implement two pure virtua functions:

virtual void Draw(const AVIrajectory& G4int i_node = 0) const = O;
virtual void Print(std::ostream& ostr) const = O;

See for example G4TrajectoryDrawByParticlel D.
* G4VModelFactory - an abstract base class for factories creating models and associated messengers.

It isnot necessary to generate messengersfor atrajectory model that will be constructed and configured directly
in compiled code. If the user requires model creation and configuration features through interactive commands,
however, there must be a mechanism to generate both models and their associated messengers. This is the
role of G4V Model Factory. Concrete factories inheriting from G4V Model Factory are responsible for creating
a concrete model and concrete messengers. To help ensure a type safe messenger to model interaction on the
command line, the messengers should inherit from G4V M odel Command.

Concrete factories must implement one pure virtual function:

virtual Model AndMessengers
Creat e(const GAString& pl acenent, const (AString& nodel Nane) = 0;

23
where placement indicates which directory space the commands should occupy. See for example

GATrajectoryDrawByParticlel DFactory.

Design and Function
of Geant4 Categories

2.12.5. View parameters

View parameters such as camera parameters, drawing styles (wireframe/surface etc) are held by
G4ViewParameters. Each viewer holds aview parameters object which can be changed interactively and adefault
object (for useinthe/ vi s/ vi ewer/ r eset command).

If atoolkit developer of Geant4 wants to add entries of view parameters, he should add fields and methods to
G4ViewParameters.

2.12.6. Visualisation Attributes

All drawable objects (should) have a method:

const AVi sAttributes* GetVisAttributes() const;
A drawable object might be:

» a“visible" (i.e, inheriting G4Visible), such as a polyhedron, polyline, circle, etc. (note that text is a dlightly
special case - see below) or
» asolid whose vis attributes are held in itslogical volume.

2.12.6.1. Finding the applicable vis attributes

Thisisanissuefor all scene handlers. The scene handler iswherethe colour, style, auxiliary edgevisibility, marker
Size, etc., of individual drawable objects are needed.

2.12.6.1.1. Visibles

If the vis attributes pointer is zero, drivers should pick up the default vis attributes from the viewer:

const AVisAttributes* pVisAtts = visible. CGetVisAttributes();
if (!pVisAtts)
pVisAtts = fpVi ewer->Cet Vi ewPar anet ers() . Get Defaul t Vi sAttri butes();

where visible denotes any visible object (polyhedron, circle, etc.).

Thereisautility function G4V Viewer::GetApplicableVisAttributes which does this, so an alternativeis:

const AVisAttributes* pVisAtts =
f pVi ewer - >Get Appl i cabl eVi sAttributes(visible. GetVisAttributes());

Confusingly, there is a utility function G4V SceneHandler::GetCol our which also does this, so if it's only colour
you need, the following suffices:
const (ACol our & col our Get Col our (vi sible);

but equally well:

const AVisAttributes* pVisAtts =
f pVi ewer - >Get Appl i cabl eVi sAttributes(visible. GetVisAttributes());
const (ACol our & col our pVi sAtts->Get Col our();

or even:

const AVisAttributes* pVisAtts = visible. GetVisAttributes();
if (!pVisAtts)

pVisAtts = fpVi ewer->Cet Vi ewPar anet ers(). Get Defaul t Vi sAttri butes();
const (ACol our & col our pVi sAtts->Get Col our();

2.12.6.1.2. Text

Text isaspecial case because it hasits own default vis attributes:

24

Design and Function
of Geant4 Categories

const AVisAttributes* pVisAtts = text.GetVisAttributes();
if (!pVisAtts)

pVisAtts = fpVi ewer->Get Vi ewPar anet er s() . Get Def aul t Text Vi sAttri but es();
const (ACol our & col our pVi sAtts->Get Col our();

and there is a utility function G4V SceneHandler::GetTextColour:

const (ACol our & col our Get Text Col our (text);

2.12.6.1.3. Solids

For specific solids, the G4PhysicalVolumeModel that provides the solids also provides, via PreAddSolid, a
pointer to its vis attributes. If the vis attribites pointer in the logical volume is zero, it provides a pointer to
the default vis attributes in the model, which in turn is (currently) provided by the viewer's vis attributes (see
G4V SceneHandler::CreateM odelingParameters). So the vis attributes pointer is guaranteed to be pertinent.

If the concrete driver does not implement AddSolid for any particular solid, the base class convertsit to primitives
(usually a G4Polyhedron) and again, the vis attributes pointer is guaranteed.

2.12.6.1.4. Drawing style

The drawing style is normally determined by the view parameters but for individual drawable ob-
jects it may be overridden by the forced drawing style flags in the vis attributes. A utility function
G4ViewParameters::DrawingStyle G4V SceneHandler::GetDrawingStyle is provided:

G4Vi ewPar anet ers: : Drawi ngStyl e drawi ng_styl e = Get Drawi ngStyl e(pVi sAtts);

2.12.6.1.5. Auxiliary edges

Similarly, the visibility of auxiliary/soft edges is normally determined by the view parameters but may
be overridden by the forced auxiliary edge visible flag in the vis attributes. Again, a utility function
G4V SceneHandler::GetAuxEdgeVisible is provided:

G4bool i sAuxEdgeVi si bl e = Get AuxEdgeVi si bl e (pVisAtts);
2.12.6.1.6. LineSegmentsPerCircle

Also, the precision of rendering curved edges in the polyhedral representation of volumes is normally deter-
mined by the view parameters but may be overridden by a forced attribute. A utility function that respects this,
G4V SceneHandler:: GetNoOf Sides, is provided. For example:

G4Pol yhedr on: : Set Nunber O Rot at i onSt eps (Get NoOF Si des (pVi sAttribs));
2.12.6.1.7. Marker size

These have nothing to do with vis attributes; they are an extra property of markers, i.e., objects that inherit
G4VMarker (circles, squares, text, etc.). However, the algorithm for the actual size is quite complicated and a
utility function G4V SceneHandler::GetMarkerSize is provided:

Mar ker Si zeType si zeType;
GAdoubl e size = Cet Marker Si ze (text, sizeType);

sizeTypeisworld or screen, signifying that the size isin world coordinates or screen coordinates respectively.
[Status of this chapter]

27.06.05 partially re-organized and section on design philosophy added (from Geant4 general paper) by D.H.
Wright
13.10.05 Section on vis attributes added by John Allison.

25

Design and Function
of Geant4 Categories

06.01.06 Re-write of ““Design Philosphy" and introduction of *~The Graphics Interfaces” and " The Geant4 Visu-
alisation System" by John Allison.
Dec. 2006 Conversion from latex to Docbook verson by K. Amako

2.13. Intercoms
2.13.1. Design Philosophy

The intercoms category implements an expandable command interpreter which is the key mechanism in Geant4
for realizing customizable and state-dependent user interactionswith all categories without being perturbed by the
dependencies among classes. The capturing of commandsishandled by a C++ abstract class G4UlIsession. Various
concrete implementations of the command capturer are contained in the [user] interfaces category. Taking into
account the rapid evolution of graphical user interface (GUI) technology and consequent dependence on external
facilities, plural and extensible GUIs are offered.

Programmers need only know how to register the commands and parameters appropriate to their problem domain;
no knowledge of GUI programming is required to allow an application to use them through one of the available
GUls.

Theintercoms category also provides the virtual base classes

e G4VVisManager,
» G4V GraphicsScene, and
» G4V Global FastSimulationM anager.

2.13.2. Class Design

» G4UlSession -
G4UlBatch -

* G4UICommand -
e G4Ulparameter -
e G4UlImessenger -

The object-oriented design of the 'user interface' related classes is shown in the class diagram Figure 2.21. The
diagram is described in the Booch notation.

/' GavisManagar
visMarager___ !, ;
LA e

—UIManagér

S Gt 4 Galel Ty
I ") P EXIT'and other
Y . _ 4 " contiol
. commands

4] \ g’ Gallloontrol
F -. N, Messenger /

GaUleminal™

Figure2.21. Overview of intercom classes

[Status of this chapter]

27.06.05 design philosophy (from Geant4 general paper) and class design sections added by D.H. Wright

26

Design and Function
of Geant4 Categories

Dec. 2006 Conversion from latex to Docbook verson by K. Amako

27

Chapter 3. Extending Toolkit Functionality

3.1. Geometry
3.1.1. What can be extended ?

Geant4 aready allows a user to describe any desired solid, and to use it in a detector description, in some cases,
however, the user may want or need to extend Geant4's geometry. One reason can be that some methods and types
in the geometry are general and the user can utilise specialised knowledge about his or her geometry to gain a
speedup. The most evident case where this can happen is when a particular type of solid is a key element for a
specific detector geometry and an investment in improving its runtime performance may be worthwhile.

To extend the functionality of the Geometry in thisway, atoolkit devel oper must write asmall number of methods
for the new solid. We will document below these methods and their specifications. Note that the implementation
details for some methods are not atrivial matter: these methods must provide the functionality of finding whether
apoint isinside a solid, finding the intersection of aline with it, and finding the distance to the solid along any
direction. However once the solid class has been created with all its specifications fulfilled, it can be used like any
Geant4 solid, asit implements the abstract interface of G4V Solid.

Other additions can a so potentially be achieved. For example, an advanced user could add a new way of creating
physical volumes. However, because each type of volume has a corresponding navigator hel per, thiswould require
to create a new Navigator as well. To do this the user would have to inherit from G4Navigator and modify the
new Navigator to handle this type of volumes. This can certainly be done, but will probably be made easier to
achievein the future versions of the Geant4 toolkit.

3.1.2. Adding a new type of Solid

We list below the required methods for integrating a new type of solid in Geant4. Note that Geant4's specifica-
tions for a solid pay significant attention to what happens at points that are within a small distance (tolerance,
kCar Tolerancein the code) of the surface. So special care must be taken to handle these cases in considering all
different possible scenarios, in order to respect the specifications and alow the solid to be used correctly by the
other components of the geometry module.

Creating a derived class of G4VSolid
The solid must inherit from G4V Solid or one of its derived classes and implement its virtual functions.

Mandatory member functions you must define are the following pure virtual of G4V Solid:

El nsi de | nsi de(const GAThreeVector & p)
G4doubl e Di st anceTol n(const (AThr eeVect or & p)
GAdoubl e Di st anceTol n(const GAThreeVector& p, const GAThreeVector & v)
GAThr eeVect or Sur f aceNor mal (const GAThr eeVect or & p)
GAdoubl e Di st anceToCQut (const GAThr eeVect or & p)
G4doubl e Di st anceToCQut (const (AThreeVector& p, const (AThreeVector & v,
const (Abool cal cNor n¥f al se,
G4bool *val i dNor n=0, GAThr eeVector *n)
G4bool Cal cul at eExt ent (const EAXi s pAxi s,
const GAVoxel Li mits& pVoxel Limt,
const AAffineTransform& pTransform
G4doubl e& pM n,
GAdoubl e& pMax) const
GACeonet ryType Cet EntityType() const
std::ostream& Stream nfo(std::ostream& os) const

They must perform the following functions

El nsi de | nsi de(const GAThreeVect or & p)

This method must return:

» kOutsideif the point at offset p is outside the shape boundaries plus Tolerance/2,

28

Extending Toolkit Functionality

» kSurfaceif the point is <= Tolerance/2 from a surface, or
* kinside otherwise.

GAThr eeVect or Sur f aceNor mal (const GAThr eeVect or & p)

Return the outwards pointing unit normal of the shape for the surface closest to the point at offset p.

G4doubl e Di st anceTol n(const GAThreeVect or & p)

Calculate distance to nearest surface of shape from an outside point p. The distance can be an underestimate.

GAdoubl e Di st anceTol n(const (AThreeVector & p, const (AThreeVector & v)

Return the distance along the normalised vector v to the shape, from the point at offset p. If thereisnointersection,
return kinfinity. Thefirst intersection resulting from “leaving' asurface/volumeisdiscarded. Hence, thisistolerant
of points on surface of shape.

G4doubl e Di st anceToCQut (const GAThr eeVect or & p)
Calculate distance to nearest surface of shape from an inside point. The distance can be an underestimate.
GAdoubl e Di stanceToCQut (const GAThreeVector& p, const GAThreeVector& v,

const (Abool cal cNor n¥f al se,

G4bool *val i dNor n=0, GAThreeVector *n=0);

Return distance along the normalised vector v to the shape, from a point at an offset p inside or on the surface of
the shape. Intersections with surfaces, when the point is not greater than kCarTolerance/2 from a surface, must
be ignored.

If calcNorm istrue, then it must also set validNorm to either

If calcNorm isfalse, then validNorm and n are unused.

GAbool Cal cul at eExt ent (const EAxi s pAxis,
const AVoxel Li mits& pVoxel Limt,
const GAAffineTransform& pTransform
G4doubl e& pM n,
G4doubl e& pMax) const

Calculate the minimum and maximum extent of the solid, when under the specified transform, and within the
specified limits. If the solid is not intersected by the region, return false, else return true.

GAGeonetryType GetEntityType() const;

Provide identification of the class of an object (required for persistency and STEP interface).

std::ostream& Stream nfo(std::ostream& os) const

Should dump the contents of the solid to an output stream.

The method:

GAdoubl e Get Cubi cVol une()

should beimplemented for every solid in order to cache the computed value (and therefore reuse it for future calls
to the method) and to eventually implement a precise computation of the solid's volume. If the method will not
be overloaded, the default implementation from the base class will be used (estimation through a Monte Carlo
algorithm) and the computed value will not be stored.

There are afew member functions to be defined for the purpose of visualisation. The first method is mandatory,
and the next four are not.

29

Extending Toolkit Functionality

// Mandat ory
virtual void DescribeYoursel fTo (&AVG aphi csScene& scene) const = 0;

/1 Not mandatory

virtual (4VisExtent GetExtent() const;

virtual G4Pol yhedron* CreatePol yhedron () const;
virtual GANURBS* Cr eat eNURBS () const;
virtual G4Pol yhedron* Get Pol yhedron () const;

What these methods should do and how they should be implemented is described here.

voi d Descri beYoursel f To (AVG aphi csScene& scene) const;

This method is required in order to identify the solid to the graphics scene. It is used for the purposes of ““double
dispatch”. All implementations should be similar to the one for G4Box:

voi d G4Box: : Descri beYoursel f To (4VG aphi csScene& scene) const

scene. AddSol id (*this);
}

The method:

GAVi sExt ent Get Extent () const;

provides extent (bounding box) as a possible hint to the graphics view. Y ou must create it by finding a box that
encloses your solid, and returning a VisExtent that is created from this. The G4VisExtent must presumably be
giventheminusx, plusx, minusy, plusy, minusz and plus z extents of this "box". For example acylinder can say

AVi sExt ent ATubs: : Get Extent () const
/1 Define the sides of the box into which the GATubs instance would fit.
return AAVi sextent (-fRvax, fRwax, -fRMVax, fRwvax, -fDz, fDz);

}

The method:

G4APol yhedr on* Creat ePol yhedron () const;

is required by the visualisation system, in order to create a redlistic rendering of your solid. To create a
G4Polyhedron for your solid, consult G4Polyhedron.

While the method:

GAPol yhedr on* Get Pol yhedron () const;

isa “smart" access function that creates on requests a polyhedron and stores it for future access and should be
customised for every solid.

The method:

GANURBS* Creat eNURBS () const;

isnot currently utilised, so you do not have to implement it.

3.1.3. Modifying the Navigator

For the vast majority of use-cases, it is not indeed necessary (and definitely not advised) to extend or modify the
existing classesfor navigation in the geometry. A possible use-case for which thismay apply, isfor the description
of anew kind of physical volumeto beintegrated. We believe that our set of choicesfor creating physical volumes
isvaried enough for nearly all needs. Future extensions of the Geant4 toolkit will probably make easier exchanging
or extending the G4Navigator, by introducing an abstraction level simplifying the customisation. At thistime, a
simple abstraction level of the navigator is provided by allowing overloading of the relevant functionalities.

30

Extending Toolkit Functionality

Extending the Navigator
The main responsibilities of the Navigator are:

* locate apoint in the tree of the geometrical volumes;
» compute the length aparticle can travel from apoint in a certain direction before encountering a volume bound-
ary.

The Navigator utilises one helper class for each type of physical volume that exists. You will have to reuse the
helper classes provided in the base Navigator or create new ones for the new type of physical volume.

To extend G4Navigator you will havethen toinherit from it and modify these functionsin your ModifiedNavigator
to request the answers for your new physical volume type from the new helper class. The ModifiedNavigator
should del egate other cases to the Geant4's standard Navigator.

Replacing the Navigator

Replacing the Navigator is another possible operation. It is similar to extending the Navigator, in that any types
of physical volume that will be allowed must be handled by it. The same functionality is required as described
in the previous section.

However the amount of work is probably potentially larger, if support for all the current types of physical volumes
isrequired.

The Navigator utilises one helper class for each type of physical volume that exists. These could also potentially
be replaced, allowing a simpler way to create a new navigation system.

3.2. Electromagnetic Fields

3.2.1. Creating a New Type of Field

Geant4 currently handles magnetic and el ectric fieldsand, in futurerel eases, will handle combined electromagnetic
fields. Fields due to other forces, not yet included in Geant4, can be provided by describing the new field and
the force it exerts on a particle passing through it. For the time being, all fields must be time-independent. This
restriction may be lifted in the future.

In order to accommodate a new type of field, two classes must be created: afield type and a class that determines
the force. The Geant4 system must then be informed of the new field.

A new Field class

A new type of Field class may be created by inheriting from G4Field

class NewField : public G4Field

{
public:
void GetFieldValue(const double Point[3],
doubl e *pField)=0;
}

and deciding how many componentsyour field will have, and what each component represents. For example, three
components are required to describe avector field while only one component isrequired to describe ascalar field.

If youwant your field to be acombination of different fields, you must choose your convention for which field goes
first, which second etc. For example, to define an electromagnetic field we follow the convention that components
0,1 and 2 refer to the magnetic field and components 3, 4 and 5 refer to the electric field.

By leaving the GetFieldV alue method pure virtual, you force those users who want to describe their field to create
aclass that implements it for their detector's instance of this field. So documenting what each component means
isrequired, to give them the necessary information.

31

Extending Toolkit Functionality

For example someone can describe DetectorAbc's field by creating a class DetectorAbcField, that derives from
your NewField

cl ass DetectorAbcField : public NewField

{
public:
void MFiel dG adi ent:: CGet Fi el dVal ue(const double Point[3],
double *pField);

}
They then implement the function GetFieldVaue

void MFieldG adient:: CGetFiel dval ue(const double Point[3],
doubl e *pField)

{
/] We expect pField to point to pField[9];
/1 This & the order of the conponents of pField is your own
/] convention

/1 We calculate the value of pField at Point ...

}
A new Equation of Motion for the new Field

Once you have created a new type of field, you must create an Equation of Motion for this Field. Thisisrequired
in order to obtain the force that a particle feels.

To do this you must inherit from G4Mag_EqRhs and create your own eguation of motion that understands your
field. Init you must implement the virtual function EvaluateRhsGivenB. Given the value of thefield, thisfunction
calculates the value of the generalised force. Thisisthe only function that a subclass must define.

virtual void Eval uat eRhsG venB(const Gidouble y[],
const G4doubl e B[3],
GAdoubl e dydx[]) const = O;

In particular, the derivative vector dydx is a vector with six components. The first three are the derivative of
the position with respect to the curve length. Thus they should set equal to the normalised velocity, which is
components 3, 4 and 5 of y.

(dydx[0], dydx[1], dydx[2]) = (y[3]., y[4]. y[5])
The next three components are the derivatives of the velocity vector with respect to the path length. So you should
write the "force" components for
dydx[3], dydx[4] and dydx[5]
for your field.

Get a G4FieldManager to use your field

In order to inform the Geant4 system that you want it to use your field asthe global field, you must do thefollowing
steps:

1. Create a Stepper of your choice:

your St epper = new G4C assi cal RK(your Equati onOf Motion);
/1 or if your field is not snooth eg
/1 new Al nplicitEul er(yourEquationCf Motion);

2. Createachord finder that usesyour Field and Stepper. Y ou must a so giveit aminimum step size, below which
it does not make sense to attempt to integrate:

32

Extending Toolkit Functionality

your Chor dFi nder = new G4Chor dFi nder (your Fi el d,
your M ni nunStep, // say 0.01*mm
your St epper) ;

3. Next create a G4FieldManager and give it that chord finder,

your Fi el dvanager = new AFi el dManager () ;
your Fi el dManager . Set Chor dFi nder (your Chor dFi nder) ;

4. Finally wetell the Geometry that this FieldManager is responsible for creating afield for the detector.

GATr ansport ati onManager : : Get Tr ansport at i onManager ()
-> Set Fi el dManager (your Fi el dManager);

Changes for non-electromagnetic fields

If the field you are interested in simulating is not electromagnetic, another minor modification may be required.
Thetransportation currently chooses whether to propagate aparticlein afield or rectilinearly based on whether the
particleis charged or not. If your field affects non-charged particles, you must inherit from the G4Transportation
and re-implement the part of GetAlongStepPhysical Interactionl ength that decides whether the particlesis affected
by your force.

In particular the relevant section of code does the following:

/] Does the particle have an (EM field force exerting upon it?
/1
if((particleCharge!=0.0)){

fi el dExertsForce= this->Doesd obal Fi el dExi st ();
/] Future: will/can al so check whether current volune's field is Zero or
/] set by the user (in the logical volune) to be zero.

}

and you want it to ask whether it feels your force. If, for the sake of an example, you wanted to see the effects of
gravity on a heavy hypothetical particle, you could say

/] Does the particle have ny field' s force exerted on it?
/1
if (particle->GetNane() == "VeryHeavyW MP") {
fiel dExertsForce= this->Doesd obal Fi el dExist(); // For gravity
}

After doing all these steps, you will be able to see the effects of your force on a particle's motion.

[Status of this chapter]

10.06.02 partialy re-written by D.H. Wright
14.11.02 spell check by P. Arce

3.3. Particles

3.3.1. Properties of particles

The G4ParticleDefinition class has properties to characterize individual particles, such as name, mass, charge,
spin, and so on. Properties of particles are set during initialization of each particle. Default values of particle
properties are described in each particles class. In addition, properties of heavy nuclei can be given by external
files. Basicaly, these properties can not be changed after initialization phase except for onesrelated its decay; life
time, branching ratio of each decay mode and the ““stable" flag. However, Geant4 proivides a method to override
these properties by using external files.

33

Extending Toolkit Functionality

Properties of nuclei

Individual classes are provided for light nuclei (i.e. deuteron, triton, He3, and Hed) with default values of their
properties. Other nuclel are dynamically created by requests from processes (and users). G4lonTable classhandles
creation of such ions. Default properties of nuclei are determined with help of G4NuclearProperties.

Users can register a G4l sotopeTable to the G4lonTable. G4l sotopeTable describes properties of ions which are
used to create ions. You can get exited energy, decay modes, and life time for relatively long life nuclei by us-
ing G4RIsotopeTable and data files (GARADIOACTIVEDATA should be set to the directory where data files
exist). G4lsotopeMagneticMomentTable provides a table of magnetic moment of nuclei with the data file of
G4l sotopeMagneticMoment.table (The file name should be set to G4AIONMAGNETICMOMENT)

Changing particle properties

Only in “"Prelnit" phase, properties can be modified with help of G4ParticlePropertyTable class. Particle prop-
erties can be overridden with the method

(Abool SetParticl eProperty(const GAParticl ePropertyDat a& newProperty)

by setting new valuesin G4ParticlePropertyData . In addition, the current values of particles properties can be
extracted into text filesby using G4TextPPReporter . On the other hand, G4TextPPRetriever can change particle
properties according to text files.

3.3.2. Adding New Particles

You can add a new particle by creating a new class for it. The new class should be derived from
G4ParticleDefinition. You can find an example under examples/extended/exoticphysics/monopole. A new class
for the monopleis defined as follows;

cl ass GAMonopol e : public AParticl eDefinition
{
private:

stati c G4AMonopol e* t heMonopol e;

G4Monopol e(

const GAString& aNane, GAdoubl e nmass,
G4doubl e wi dt h, GAdoubl e char ge,
4i nt i Spi n, G4i nt i Parity,
G4i nt i Conj ugati on, G4int il sospin,
GAi nt i | sospi n3, GAi nt gParity,
const GAString& pType, G4i nt | ept on,
4i nt baryon, G4i nt encodi ng,
G4bool st abl e, GAdoubl e lifetine,
G4DecayTabl e *decaytable);

public:

virtual ~G4Mbnopol e();
static G4Monopol e* Monopol eDefinition();
static G4Monopol e* Monopol e();

}

Static methods above need to be defined and implemented so that this new particle instance will be created in
ConstructParticls method of your physicslist. Y ou can add new propertiesif necessary (G4Monopole has a prop-
erty for magnetic charge) Values of properties need to be given in the static method as other particle classes.

GAMonopol e* GAMonopol e: : Monopol eDef i ni ti on(G4doubl e nass, G4i nt nCharge, G4int eCharge)

i f(!theMonopol e) {
t heMonopol e = new GAMbnopol e(

"nmonopol e", nass, 0. 0* eV, 0,
0, 0, 0,
0, 0, 0,
"boson", 0, 0, 0,
true, -1.0, 0);

return t heMonopol e;

Extending Toolkit Functionality

[Status of this chapter]

Nov. 2008 cretad by H. Kurashige

3.4. Physics Processes

Adding a new electromagnetic process. Adding a new hadronic process.

[Status of this chapter]

27.06.05 under construction
Dec. 2006 Conversion from latex to Docbook verson by K. Amako

3.5. Hadronic Physics
3.5.1. Introduction

Optimal exploitation of hadronic final states played a key role in successes of all recent collider experiment in
HEP, and the ability to use hadronic final states will continue to be one of the decisive issues during the analysis
phase of the LHC experiments. Monte Carlo programs like Geant4 facilitate the use of hadronic final states, and
have been devel oped for many years.

We give an overview of the Object Oriented frameworks for hadronic generators in Geant4, and illustrate the
physics models underlying hadronic shower simulation on examples, including the three basic types of modeling;
data-driven, parametrisation-driven, and theory-driven modeling, and their possible realisations in the Object Ori-
ented component system of Geant4. We put particular focus on the level of extendibility that can and has been
achieved by our Russian dolls approach to Object Oriented design, and the role and importance of the frameworks
in acomponent system.

3.5.2. Principal Considerations

The purpose of this section is to explain the implementation frameworks used in and provided by Geant4 for
hadronic shower simulation asin the 1.1 release of the program. The implementation frameworks follow the Rus-
sian dolls approach to implementation framework design. A top-level, very abstracting implementation framework
providesthe basicinterface to the other Geant4 categories, and fulfilsthe most general use-case for hadronic show-
er simulation. It isrefined for more specific use-cases by implementing ahierarchy of implementation frameworks,
each level implementing the common logic of a particular use-case package in a concrete implementation of the
interface specification of one framework level above, thisway refining the granularity of abstraction and delega-
tion. This defines the Russian dolIs architectural pattern. Abstract classes are used as the del egation mechanism L

All framework functional requirements were obtained through use-case analysis. In the following we present for
each framework level the compressed use-cases, requirements, designs including the flexibility provided, and il-
lustrate the framework functionality with examples. All design patterns cited are to be read as defined in [Gam-
mal995].

3.5.3. Level 1 Framework - processes

There are two principal use-cases of the level 1 framework. A user will want to choose the processes used for his
particular simulation run, and a physicist will want to write code for processes of his own and use these together
with the rest of the system in a seamless manner.

Requirements

1. Provide a standard interface to be used by process implementations.
2. Provide registration mechanisms for processes.

1 The same can be achieved with template specialisations with dightly improved CPU performance but at the cost of significantly more
complex designs and, with present compilers, significantly reduced portability.

35

Extending Toolkit Functionality

Design and interfaces

Both requirements are implemented in a sub-set of the tracking-physics interface in Geant4}. The class diagram
isshown in Figure 3.1.

«<Purely Absiract=»
G4VProoess

FosiStepGetPhystcalinteractionlengtng)
WPosStepDo)

S alongStep EetPhysica Interactionlengihi)
WAlongStepDol()
SA1RE=IGEP y=ical Interact onLengthiy
®A1Re00)

B

ANt

. o ADEITaCt
G4V DiscreteProcess .

G4V RestProcess
PostSiepSeatPhysicalinteractionLengthy)

% .
EPostTiepDolt]) ‘mxlgﬁ;@scannwmm Lengin{)

woADEiract=
G4 HadronicProcess

% ountuale GetMicooecoplcCrosaSection()

it ugo PostStepDolt)

SRagisterie)

%chooseHadronizinteraction))

S%GeneralPoststep Dolt))

% cstaticso GetlsotopeProductionintof)

“RegizterisotopeP roductonhModel)

@ <sigiicoo EnablelsotoperoductionGlobally()

%.c.ootaticeo Dizabie BotopeFroductionGlobally ()
EnalezotopeCourntingl)

%DizanielsotopeCouning)

Figure3.1. Level 1implementation framework of the hadronic category of GEANTA4.

All processes have acommon base-class GAVPr ocess, from which aset of specialised classesare derived. Three
of them are used as base classes for hadronic processesfor particles at rest (G4VRest Pr ocess), for interactions
in flight (AVDi scr et ePr ocess), and for processes like radioactive decay where the same implementation
can represent both these extreme cases (AVRest Di scr et e- Process).

Each of these classes declares two types of methods; one for calculating the time to interaction or the physical
interaction length, alowing tracking to request the information necessary to decide on the process responsible
for final state production, and one to compute the final state. These are pure virtual methods, and have to be
implemented in each individual derived class, as enforced by the compiler.

Framework functionality

The functionality provided is through the use of process base-class pointers in the tracking-physicsinterface, and
the APr ocess- Manager . All functionality is implemented in abstract, and registration of derived process
classeswiththe APr ocess- Manager of anindividual particlealowsfor arbitrary combination of both Geant4
provided processes, and user-implemented processes. This registration mechanism is a modification on a Chain
of Responsibility. It is outside the scope of the current paper, and its description is available from G4Manual.

3.5.4. Level 2 Framework - Cross Sections and Models

At thenext level of abstraction, only processesthat occur for particlesin flight are considered. For thesg, itiseasily
observed that the sources of cross sections and final state production are rarely the same. Also, different sources
will comewith different restrictions. The principal use-cases of theframework are addressing these commonalities.
A user might want to combine different cross sections and final state or isotope production models as provided
by Geant4, and a physicist might want to implement his own model for particular situation, and add cross-section
data sets that are relevant for his particular analysisto the system in a seamless manner.

Requirements
1. Flexible choice of inclusive scattering cross-sections.

2. Ability to use different data-sets for different parts of the simulation, depending on the conditions at the point
of interaction.

36

http://geant4.web.cern.ch/geant4/support/userdocuments.shtml

Extending Toolkit Functionality

g b~ w

~N O

9.

conditions at the point of interaction.

tions at the point of interaction.

. Ability to add user-defined data-setsin a seamless manner.
. Flexible, unconstrained choice of final state production models.
. Ability to use different final state production codes for different parts of the simulation, depending on the

. Ability to add user-defined final state production modelsin a ssamless manner.
. FHexible choice of isotope production models, to run in parasitic mode to any kind of transport models.
. Ability to use different isotope production codes for different parts of the simulation, depending on the condi-

Ability to add user-defined isotope production modelsin a seamless manner.

Design and interfaces

The above requirements are implemented in three framework components, one for cross-sections, final state pro-
duction, and isotope production each. The class diagrams are shown in Figure 3.2 for the cross-section aspects,
Figure 3.3 for the final state production aspects, and figure Figure 3.4 for the isotope production aspects.

| #CEabisisctopsCounting)

xConcrotEss

ccAbsT A
G4HadronicProcess

iriuak-> SetMicros copleSrassSeciion]

duaks o]
BRagister i)
AChocsaHadron kimaactien|)
*GanamiPostCtepOok]]

=staticss GatksotopeProdudionimal)
SRagster lsotcpaPod uctankcdsl)
Foostatioos EnabksoiopaFraductionSiobaly()

Aostaticss Disablal sotope P ouc ond oalky()
AEnabluiopaCaurting)y

T
<]

==COnmakes: ==Canznetes.s ccCancEtEss

G4HadronFissionProcess, G4HadonlnelasticProcess | G4HadronElasticProcess | G4HadronCaptureProcess

zeCOncrakess <

G4CrossSectionDataStore

YeAckiDainga])
%asiCrosz3scion)

ccConrekss

K1+ ADataSet
z=Puraly Abstracts= e
G4V CrossSectionDataSet ™
AisApplicabl) -
EaicossSation|) —__| =eCancata=s
BDataSet

Figure3.2. Level 2implementation framewor k of the hadr onic category of Geant4; cross-
section aspect.

<<Concretes>

G4EnergyRangeManager

%G etHadroniclnteraction)

==Concretes:
ConcreteModel

«zfbstracts=
GdHadronicProcess

¥ zavirtual== GetMicroscopicCrossSection])
Boaviriuals= PostStepDalt])

WRegisteriel)

®ChooseHadronicinteraction()
WZeneralPostStep Dolti)

Focstatice> GetlzotopeProd uctionIrto()
¥Registerlsotope Productionfodal ()

% estaticss EnablelsotopeProductionGloballyl)
% cestatics> DisablelsotopeProdustionGlobal ()
WEnablalsctopeCaounting ()
%DisablelsctopeCounting()

n 1.B4Hadronicinteraction

0.1
wehbatractss
0..r| G4Element

BApplyYoursal)
BZatMinEnargy()

| *SstMaxEnengyr)
A7 WDedetivataFor()

o
T G4Material

Figure3.3. Level 2implementation framework of the hadronic category of Geant4; final
state production aspect.

37

Extending Toolkit Functionality

ccAlSiTactso
G4HadronicProcess

Focuriuabs GRIMECSITRRCroasSaotion))
Wrccuriuab> PosiStepooi()

Rugistnmiia)

#ChoosaHad oncimeraction|
AEanaraFostSepooit])

Arccsiaticzo GatlsoinpaFroductian o]
*fmgister soiopaFroductionhicdak)
Apccsinticss EnabklschopeaProduct oSl chaly)
Az cxtnticso DisablalsoinpaFroductiondiobal i)
EnmbkisaiopaCounting)
*0isablalsoicpaCouniing()

- o
.*—.-Fumiy.&b:unn»
G4Vl zotopeProduction

szConois:

4 |zoParticleChangs

Wi sctopa|)

Do EtEs s

GdMeutron lsotopeProduction

I
Figure 3.4. Level 2 implementation framework of the hadronic category of Geant4,
isotope production aspect

The three parts are integrated in the G4Hadr oni ¢c- Pr ocess class, that serves as base-class for all hadronic
processes of particlesin flight.

Cross-sections

Each hadronic process is derived from G4Hadr oni c- Pr ocess}, which holds a list of ““cross section da-
ta sets". The term ““data set" is representing an object that encapsulates methods and data for calculating total
cross sections for a given process in a certain range of validity. The implementations may take any form. It
can be a simple equation as well as sophisticated parameterisations, or evaluated data. All cross section data
set classes are derived from the abstract class GAVCr ossSect i on- Dat aSet } , which declares methods that
allow the process inquire, about the applicability of an individual data-set through | sAppl i cabl e(const
ADynam cParticle*, const GAEl enent *), and to delegate the calculation of the actual cross-section
value through Get Cr ossSecti on(const GADynami cParticl e*, const GAEl enent*).

Final state production

The G4Hadr oni cl nt er act i on base classis provided for final state generation. It declares a minimal inter-
face of only one pure virtual method: G4VPar t i cl eChange* Appl yYoursel f(const ATrack &,

ANucl eus &) }. G4Hadroni cProcess provides aregistry for fina state production models inheriting
from GAHadr oni c- | nt er act i on. Again, fina state production model is meant in very general terms. This
can be an implementation of a quark gluon string model [QGSM], a sampling code for ENDF/B data formats [
ENDFForm], or a parametrisation describing only neutron elastic scattering off Silicon up to 300~MeV.

Isotope production

For isotope production, a base class (AVI sot ope- Producti on) is provided. It declares a method
Al soResult * Cetlsotope(const (ATrack & const (ANucl eus &) that calculates and
returns the isotope production information. Any concrete isotope production model will inherit from this class,
and implement the method. Again, the modeling possibilities are not limited, and the implementation of concrete
production models is not restricted in any way. By convention, the Get | sot ope method returns NULL, if the
model is not applicable for the current projectile target combination.

Framework functionality:

Cross Sections

(AHadr oni cPr ocess providesregistering possibilitiesfor datasets. A default isprovided covering al possible
conditions to some approximation. The process stores and retrieves the data sets through a data store that acts like
aFILO stack (aChain of Responsibility with aFirst In Last Out decision strategy). Thisallowsthe user to map out

38

Extending Toolkit Functionality

the entire parameter space by overlaying cross section data sets to optimise the overall result. Examples are the
cross sections for low energy neutron transport. |f these are registered last by the user, they will be used whenever
low energy neutrons are encountered. In all other conditions the system falls back on the default, or data setswith
earlier registration dates. The fact that the registration is done through abstract base classes with no side-effects
allows the user to implement and use his own cross sections. Examples are special reaction cross sections of #-
nuclear interactions that might be used for #/# analysis at LHC to control the systematic error.

Final state production

The GAHadr oni cPr ocess class provides aregistration service for classes deriving from G4Hadr oni c- | n-
t eracti on, and delegates final state production to the applicable model. GAHadr oni c- | nt er act i onpro-
videsthefunctionality needed to define and enforce the applicability of aparticular model. Modelsinheriting from
(AHadr oni c- I nt eracti on can be restricted in applicability in projectile type and energy, and can be acti-
vated/deactivated for individual materials and elements. This allows auser to usefinal state production modelsin
arbitrary combinations, and to write his own modelsfor final state production. The designisavariant of aChain of
Responsibility. An example would be the likely CM S scenario - the combination of low energy neutron transport
with a quantum molecular dynamics [QMD], invariant phase space decay [CHIPS], and fast parametrised models
for calorimeter materials, with user defined modeling of interactions of spallation nucleonswith the most abundant
tracker and calorimeter materials.

Isotope production

The (AHadr oni cPr ocess by default calculates the isotope production information from the final state giv-
en by the transport model. In addition, it provides a registering mechanism for isotope production models that
run in parasitic mode to the transport models and inherit from 4VI sot ope- Product i on. The registering
mechanism behaves like a FILO stack, again based on Chain of Responsibility. The models will be asked for
isotope production information in inverse order of registration. The first model that returns a non-NULL value
will be applied. In addition, the GAHadr oni c- Pr ocess provides the basic infrastructure for accessing and
steering of isotope-production information. It alows to enable and disable the calculation of isotope production
information globally, or for individual processes, and to retrieve the isotope production information through the
Al soParticl eChange * GCetlsotopeProductionlnfo()} method at the end of each step. The
(AHadr oni cPr ocess is afinite state machine that will ensure the Get | sot ope- Pr oduct i onl nf o re-
turns anon-zero value only at the first call after isotope production occurred. An example of the use of this func-
tionality is the study of activation of a Germanium detector in a high precision, low background experiment.

3.5.5. Level 3 Framework - Theoretical Models

111111

G4 Hadroniclnleraction

I S
...... GaTheoFSGeremlor]

e ol
GdPatonTrarepariMade] Ao

v

.......

; prep——
GaPythiahhirterlace. . o v ighEnergyGenemston .,

||||||| .

ErintahuskarT anspatModel

F— .
A cpagmag G4 WExcitatiorHandler

o]

.............

Figure 3.5. Leve 3 implementation framework of the hadronic category of Geant4;
theor etical model aspect.

Geant4 provides at present one implementation framework for theory driven models. The main use-case isthat of
a user wishing to use theoretical models in general, and to use various intra-nuclear transport or pre-compound
models together with models simulating the initial interactions at very high energies.

Requirements

1. Allow to use or adapt any string-parton or parton transport [V NI],

39

Extending Toolkit Functionality

. Allow to adapt event generators, ex. [PY THIA7], state production in shower simulation.
. Allow for combination of the above with any intra-nuclear transport (INT).

. Allow stand-alone use of intra-nuclear transport.

. Allow for combination of the above with any pre-compound model.

. Allow stand-alone use of any pre-compound model.

. Allow for use of any evaporation code.

. Allow for seamless integration of user defined components for any of the above.

O~NO U, WDN

Design and interfaces
To provide the above flexibility, the following abstract base classes have been implemented:

* (AVHi ghEner gyGener at or

* (AVI nt ranucl ear Tr anspor t Model
* (4AVPr eConpoundModel

* (AVExci tationHandl er

In addition, the class G4 TheoFS- Gener at or isprovided to orchestrate interactions between these classes. The
classdiagramis shown in Figure 3.5.

(AVHi ghEner gy- Gener at or serves as base class for parton transport or parton string models, and for
Adaptersto event generators. This class declares two methods, Scat t er , and Get WhundedNucl eus.

The base class for INT inherits from G4Hadr oni c- | nt er act i on, making any concrete implementation us-
able as a stand-alone model. In doing s0, it re-declares the Appl yYour sel f interface of G4Hadr oni c- | n-
t eracti on, and adds a second interface, Pr opagat e, for further propagation after high energy interactions.
Pr opagat e takes as arguments a three-dimensional model of awounded nucleus, and a set of secondaries with
energies and positions.

The base class for pre-equilibrium decay models, A VPr e- ConpoundModel , inherits from GAHadr oni c-
I nt eracti on, again making any concrete implementation usable as stand-alone model. It adds a pure virtual
DeExci t e method for further evolution of the system when intra-nuclear transport assumptions break down.
DeExci t e takesa GAFr agnent , the Geant4 representation of an excited nucleus, as argument.

The base class for evaporation phases, GAVExci t at i on- Handl er , declares an abstract method, Br eakl t -
UP() , for compound decay.

Framework functionality

The G4TheoFSGener at or class inherits from G4Hadr oni c- I nt er acti on, and hence can be regis-
tered as a model for final state production with a hadronic process. It alows a concrete implementation of
&AVI ntranucl ear - Transpor t Model and GAVH ghEner gy- Gener at or to be registered, and dele-
gatesinitial interactions, and intra-nuclear transport of the corresponding secondariesto the respective classes. The
designisacomplex variant of a Strategy. The most spectacular application of this patternisthe use of parton-string
models for string excitation, quark molecular dynamics for correlated string decay, and quantum molecular dy-
namics for transport, a combination which promises to result in a coherent description of quark gluon plasmain
high energy nucleus-nucleus interactions.

TheclassG4VI nt r anucl ear Tr anspor t Model provides registering mechanisms for concrete implementa-
tions of G4VPr eConpound- Model , and provides concrete intra-nuclear transports with the possibility of del-
egating pre-compound decay to these models.

AVPr eConmpoundMbdel provides a registering mechanism for compound decay through the
AVExci t ati on- Handl er interface, and provides concrete implementations with the possibility of delegat-
ing the decay of a compound nucleus.

The concrete scenario of GATheoFS- Gener at or using a dual parton model and a classical cascade, which
in turn uses an exciton pre-compound model that delegates to an evaporation phase, would be the following:
ATheoFS- Gener at or receives the conditions of the interaction; a primary particle and a nucleus. It asks the

40

Extending Toolkit Functionality

dua parton model to perform the initial scatterings, and return the final state, along with the by then damaged
nucleus. The nucleus records all information on the damage sustained. G4TheoFS- Gener at or forwards al
information to the classical cascade, that propagates the particlesin the already damaged nucleus, keeping track of
interactions, further damageto the nucleus, etc.. Once the cascade assumptions break down, the cascade will collect
the information of the current state of the hadronic system, like excitation energy and number of excited particles,
and interpret it as a pre-compound system. It delegates the decay of this to the exciton model. The exciton model
will take the information provided, and calculate transitions and emissions, until the number of excitons in the
system equal sthe mean number of excitons expected in equilibrium for the current excitation energy. Thenit hands
over to the evaporation phase. The evaporation phase decaysthe residual nucleus, and the Chain of Command rolls
back to GATheoFS- Gener at or , accumulating the information produced in the various levels of delegation.

3.5.6. Level 4 Frameworks - String Parton Models and In-
tra-Nuclear Cascade

==AnstTacts
GaVFaronSiringhodel

*zoatian)
c<Pursty Absiract=- i - - -
GaVSiingFragrmentation |- < ‘_‘r.::?wmnmc“‘l' o GAEwribed Stiing
RFragmantEtrngQy 1 1| hzintualzs GatSiings)
PACampoiHsdmnMaments|
I Y TeZatThisFoinkar|)

=CanTatens

G PythiaFragmantationinte facs <R

<clono ke C0uakGuonStingMads|
L GFTFMade=| &GaiSiings))
R —— WiEatWoundadMuckaus) AT aiWourded Nuckeus()
GalangtudinalSiringDecay m:?""!a.- §;::::3§I§sc:::té:lml
g‘c;wnmcmanml CrRmesSotsnng
ubdSkr s
1]
stanFi|y
MFChooeeX

Figure 3.6. Level 4 implementation framework of the hadronic category of Geant4;
parton string aspect.

<<Puraly Abemiramizo
Gd4VimraMuclearTransporthicdel
fappiyvoursan) GAVKInetcHucieon
Fropagabad) “Dacay])
s Gt o v L
SEatDannbony
et osition]
Z4VI0 Huzleus T
®inn) T
=<Concraties :E::El':‘::lsmlmum]
c GotMas ;
G4Hadonkinetichods! Aoiass)) GaMuciaan
- HEct TmeSian() *3gtCier Andis|)
G4VParicleScatberer) mepmaLaan =nirribiry PR
L*':’“‘T'““m“"'x"““" ChackPauPrinCipi) e e Cladn
* e FincF mgmants) $noLamnizEons) U
Al L pclatakine o Trac k(] *DoLamntzEonsh]
| DoTimaStep(] S DoLarantoContractian)
| - :DuLommr:qua:l L}
W Do Trares kation()
&4 Particiescatberer ¥ ¥ ErariLoopd)
Gd\VFleldPropagstion PRGN EEINLCKIn
Transpor) A M mifuckeons)
i) -

SGaiExchalionEnengy()
L2 T

|
GdFancy30Nucieus

Figure3.7. Level 4implementation framework of the hadronic category of Geant4; intra-
nuclear transport aspect.

The use-cases of thislevel are related to commonalities and detailed choicesin string-parton models and cascade
models. They are use-cases of an expert user wishing to alter details of amodel, or atheoretical physicist, wishing
to study details of a particular model.

Requirements

1. Allow to select string decay algorithm

2. Allow to select string excitation.

3. Allow the selection of concrete implementations of three-dimensional models of the nucleus

4. Allow the selection of concrete implementations of final state and cross sectionsin intra-nuclear scattering.

41

Extending Toolkit Functionality

Design and interfaces

To fulfil the requirements on string models, two abstract classes are provided, the G4VPar t on- St r i nghMbd-
el andtheAVSt ri ng- Fragnent at i on. The base classfor parton string models, G4VPar t on- St r i ng-
Model , declaresthe Get St ri ngs() purevirtual method. G4VSt r i ng- Fr agnent at i on, the pure abstract
base class for string fragmentation, declares the interface for string fragmentation.

To fulfill the requirements on intra-nuclear transport, two abstract classes are provided, G4V3DNucl eus, and
(AVScat t er er . Atthispoint intime, the usage of theseintra-nuclear transport related classes by concrete codes
isnot enforced by designs, asthe details of the cascade loop are still model dependent, and more experience hasto
be gathered to achieve standardisation. It iswithin the responsibility of the implementers of concrete intra-nuclear
transport codes to use the abstract interfaces as defined in these classes.

The classdiagramisshown in Figure 3.6 for the string parton model aspects, and in Figure 3.7 for the intra-nuclear
transport.

Framework functionality

Again variants of Strategy, Bridge and Chain of Responsibility are used. G4VPar t on- St ri nghbdel imple-
mentstheinitialisation of athree-dimensional model of anucleus, and thelogic of scattering. It del egates secondary
production to string fragmentation through a G4VSt r i ng- Fr agnent at i on pointer. It provides aregistering
service for the concrete string fragmentation, and delegates the string excitation to derived classes. Selection of
string excitation is through selection of derived class. Selection of string fragmentation is through registration.

3.5.7. Level 5 Framework - String De-excitation}

GaExcited Sing

WGeIPastion(]
B EgiPoshion(]
3 . w3giPadonL i)
= -Puraly Abrsiractss Bt
GV StingFragmentation - SrmanPanoan
SFmgmanicrng() sTmnskamToCemancikass|)
mAlgAlongZ)
s Enchack]
SeSgtHadmong)
P S
G4 ExcitedStingDecay
|
==Puraly Absiractz=
GaVFragmeniationFunclion
] %GoiLightConazi)
scConomins:) | coSondatess
GADGSMFragmentation S T— Gt Lund StiingF ragmentation
it CatLightConaZ |y Crd FeynmanFragmentalion |W'“9"'c“"“2"

|p~3=|ug1-:awr-::-

Figure3.8. Level 5implementation framewor k of the hadr onic category of Geant4; string
fragmentation aspect.

The use-case of this level isthat of a user or theoretical physicist wishing to understand the systematic effects
involved in combining variousfragmentation functionswith individual typesof string fragmentation. Notethat this
framework level is meeting the current state of the art, making extensions and changes of interfacesin subsequent
releases likely.

Requirements

1. Allow the selection of fragmentation function.

Design and interfaces

A baseclassfor fragmentation functions, GAVFr agnment at i on- Funct i on} ,isprovided. It declaresthe Get -
Li ght ConeZ() interface.

42

Extending Toolkit Functionality

Framework functionality

The design is a basic Strategy. The class diagram is shown in Figure 3.8. At this point in time, the usage of
the AVFr agment at i on- Funct i on isnot enforced by design, but made available from the GAVSt r i ng-

Fragnent at i on to an implementer of a concrete string decay. G4VSt r i ng- Fr agnment at i on provides a
registering mechanism for the concrete fragmentation function. It delegates the calculation of z; of the hadron to
split of the string to the concrete implementation. Standardisation in this area is expected.

3.6. Visualisation

This Chapter is intended to be read after Chapter Section 2.12 on Visualisation object oriented design in Part 11.
Many of the concepts used here are defined there, and it strongly recommended that awriter of anew visualisation
driver or trajectory drawer reads Chapter Section 2.12 first. The class structure described there is summarised in
Figure 3.9.

GAVVismanager G4VGraphicsScene

Graphics Interface

‘ G4VisManager I ‘ GAIVG:aphicsSystam‘ ‘ G4VSceneHandler } ‘ GAVViewer

‘ G4VisExacutiva| ‘ GAXXX ‘ ‘ G4XXXSceneHandler

Geant4 Visualisation System GdScene G4ViewParameters

Figure 3.9. Geant Visualisation System Class Diagram

‘ G4XXXViewer|

3.6.1. Creating a new graphics driver

To create anew graphics driver for Geant4, it is necessary to implement a new set of three classes derived from
the three base classes, AVG aphi csSyst em (AVSceneHandl er and AWV ewer .

3.6.1.1. A useful place to start

A skeleton set of classes is included in the code distribution in the visualisation category under subdirectory
vi sual i sati on/ XXX (but they are not default-registered graphicswsxems2

There are several sets of classes, described in more detail below. A recommended approach is to copy the files
that best match your graphics system to a new subdirectory with a name that suits your graphics system .

Then

1. Change the name of the files (change the code -- XXX or XXXFi | e, etc., as chosen -- to something that suits

your graphics system).

Change XXX similarly in al files.

Change XXX similarly inname : = GAXXXin GNUrakefi | e.

. Add your new subdirectory to SUBDI RS and SUBLI BSinvi sual i sati on/ GNUrekefi | e.

. Look at the code and use it to build your visualisation driver. Y ou might also find it useful to look at ASCI -
| Tr ee (and VTr ee) as an example of aminimal graphicsdriver . Look at Fukui Render er asan example
of adriver which implements AddSol i d methods for some solids. Look at OpenGL asan example of adriver
which implements a graphical database (display lists) and the machinery to decide when to rebuild. (OpenGL
is complicated by the proliferation of combinations of the use or not of display lists for three window systems,
X-windows, X with motif (interactive), Microsoft Windows (Win32), atotal of six combinations, and much
use is made of inheritance to avoid code duplication.)

6. If it requires external libraries, introduce two new environment variablesAVI S_BUI LD _XXX_DRI VERand

AVl S_USE_XXX (where XXX is your choice as above) and make the modifications to:
* source/visualization/ mnagemnment/i ncl ude/ (4Vi sExecuti ve.icc

GRWN

270 do this,smply instantiate and register, for example: vi sManager - >Regi st er Gr aphi csSyst em(new G4XXX) beforevi sMan-
ager->lnitialise().

43

Extending Toolkit Functionality

» config/ G4VI S_BU LD. gnk
» config/ AVl S_USE. gnk

3.6.1.1.1. Graphics driver templates in the XXX sub-category

Y ou may use the following templates to help you get started writing a graphics driver . (The word ““template" is
used in the ordinary sense of the word; they are not C++ templates.)

AXXX, AXXXSceneHandl er, GAXXXVi ewer Templates for the ssmplest possible graphics driver .
Thesewould be suitablefor an “immediate” driver, i.e., one which renders each object immediately to ascreen.
Of course, if the view needs re-drawing, as, for example, after a change of viewpoint, the viewer requests a
re-issue of drawn objects.

AXXXFi | e, GAXXXFi | eSceneHandl er, GAXXXFi | eVi ewer Templatesfor afile-writing graphics
driver. The particular features are: delayed opening of the file on receipt of the first item; rewinding file on
ClearView (to simulate the clearing of views and prevent the duplication of material in the file); closing of the
file on ShowView, which may also trigger the launch of a browser. There are various degrees of sophistication
in, for example, the alocation of filenames -- see Fukui Render er or HepRepFi | e.

These templates also show the use of a specific AddSol i d function whereby the specific parameters, for
example, the dimensions of a &4Box, can be accessed.

AXXXSt or ed, GAXXXSt or edSceneHandl er, GAXXXSt or edVi ewer Templates for a graphics
driver with a store/database. The advantage of a store is that the view can be refreshed, for example, from
a different viewpoint, without a need to recompute. It is up to the viewer to decide when a re-computation
is necessary. They also show how to distinguish between permanent and transient objects -- see also Section
Section 3.6.1.6.

AXXXSG GAXXXSGSceneHandl er, GAXXXSGVi ewer Templates for a sophisticated graphics driver
with ascene graph. The scene graph, following Open Inventor parlance, isatree of objectsthat dictatesthe order
in which the objects are rendered. It obviously lends itself to the rendering of the Geant4 geometry hierarchy.
For example, the Open Inventor driver draws only the top level volumes unless madeinvisible by picking. Thus
the user can unwrap a branch of the geometry level by level. This has performance benefits and gives the user
significant and useful control over the view. These classes show how to make a scene graph of drawn volumes,
i.e., the set of volumes that have not been culled. (Normally, volumes marked invisible are culled, i.e., not
drawn. Also, the user may wish to limit the number of drawn volumes for performance reasons.) The drivers
also have to process non-geometry items and distinguish between transient and permanent objects as above.

3.6.1.2. Important Command Actions

To help understand how the Geant4 Visualization System works, here are a few important function invocation
sequencesthat follow user commands. For an explanation of the commands themselves, see command guidance or
the Control section of the Application Devel opers Guide. For afuller explanation of the functions, see appropriate
base class head files or Software Reference Manual.

/vis/viewer/clear

vi ewner - >Cl ear Vi ew() ; // Clears buffer or rewinds file.
vi ewer - >Fi ni shViewm(); // Swaps buffer (double buffer systens).

/vis/viewer/flush

/vis/viewer/refresh
/vi s/ vi ewer/ updat e

/vis/viewer/rebuild

vi ewner - >Set NeedKer nel Vi sit (true);

[vis/viewer/refresh If theview is “auto-refresh”, this command is also invoked after / vi s/ vi ew
er/create,/vis/viewer/rebuil dorachangeof view parameters(/ vi s/ vi ewer / set/ ..., etc.).

Extending Toolkit Functionality

vi ewer - >Set Vi ew() ; /] Sets canera position, etc.
viewer->ClearViewm); // Cears buffer or rewinds file.
vi ewer - >Dr awvi ew() ; /] Draws to screen or wites to

/1 filelsocket.

e /vis/viewer/update

Vi ewer - >Showvi ew() ; /1 Activates interactive wi ndows or
/1 closes file and/or triggers
/'l post-processing.

» /vis/scenel/notifyHandl ers For each viewer of the current scene, the equivalent of

/vis/viewer/refresh

If “flush" is specified on the command line, the equivalent of
/vi s/ vi ewer/ updat e

/vi s/ scene/ noti fyHandl er s isalsoinvoked after achange of scene (/ vi s/ scene/ add/ ..., etc.).

3.6.1.3. What happens in Dr awi ew?

This depends on the viewer. Those with their own graphical database, for example, OpenGL'sdisplay listsor Open
Inventor's scene graph, do not need to re-traverse the scene unless there has been a significant change of view
parameters. For example, amere change of viewpoint requiresonly achange of model-view matrix whilst achange
of rendering mode from wireframe to surface might require arebuild of the graphical database. A rebuild of the
run-duration (persistent) objectsinthesceneiscaled a™ kernel visit"; theviewer prints “Traversing scene data...”.

Note that end-of-event (transient) objects are only rebuilt at the end of an event or run, under control of the visu-
alisation manager. Smart scene handlers keep them in separate display lists so that they can be rebuilt separately
from the run-duration objects - see Section 3.6.1.6.

e Integrated viewers with no graphical database For example,
HAOpenCLl medi at eXVi ewer : : Drawi ew() .

NeedKernel Visit(); // Always need to visit G4 kernel.
ProcessVi ew) ;
Fi ni shView();

» Integrated viewerswith graphical database For example, GA0penGLSt or edXVi ewer : : Dr awvi ew() .

Kernel Vi sitDecision(); // Private function containing...
if significant change of view paraneters...
NeedKer nel Visit();
ProcessVi ew() ;
Fi ni shView);

» File-writing viewer s For example, GADAWNFI LEVi ewer : : Dr awVi ew() .

NeedKer nel Visit();
ProcessView) ;

Note that viewers needing to invoke Fi ni shVi ewmust doitin Dr awVi ew.

3.6.1.4. What happens in ProcessVi ew?

Pr ocessVi ewisinherited from AWV ewer :

45

Extending Toolkit Functionality

voi d GAWVi ewer: : ProcessVi ew() {
/1 If ClearStore has been requested, e.g., if the scene has changed,
/] of if the concrete viewer has decided that it necessary to visit
/1 the kernel, perhaps because the view paraneters have changed
/] drastically (this should be done in the concrete viewer's
/1 Drawview)...
if (fNeedKernelVisit) {
f SceneHandl er . ProcessScene(*t hi s);
f NeedKer nel Visit = fal se;
}
}

3.6.1.5. What happens in ProcessScene?

ProcessScene is inherited from G4VSceneHandl er} . It causes a traversal of the run-duration models in the
scene. For driverswith graphical databases, it causesarebuild (Cl ear St or e). Then for the run-duration models:

f ReadyFor Transi ents = fal se;
Begi nModel i ng() ;
for each run-duration nodel...
pModel -> Descri beYoursel f To(*this);
EndModel i ng() ;
f ReadyFor Tr ansi ents = true;

(A second pass is made on request -- see G4VSceneHandl er : : ProcessScene.) Theuseof f ReadyFor -
Transi ent s isdescribed in Section 3.6.1.6.

What happens then depends on the type of model:

* AAxesModel AAxesMbdel : : Descri beYour sel f To simply callssceneHandler.AddPrimitive meth-
ods directly.

sceneHandl er. Begi nPrimtives();
sceneHandl er. AddPrim tive(x_axis); // etc.
sceneHandl er. EndPrim tives();

Most other models are like this, except for the following...
e (APhysi cal Vol uneModel The geometry is descended recursively, culling policy is enacted, and for each
accepted (and possibly, clipped) solid:

sceneHandl er. PreAddSol i d(t heAT, *pVisAttribs);

pSol - >Descri beYour sel f To(sceneHandl er) ;

/'l For exanple, if pSol points to a 4Box. ..

| - - >G4Box: : Descri beYour sel f To(&AVG aphi csScene& scene) {
scene. AddSol i d(*t hi s);

}
sceneHand| er. Post AddSol i d() ;
The scene handler may implement the virtual function { AddSolid(const G4Box&)}, or inherit:

voi d GAVSceneHandl er:: AddSol i d(const (ABox& box) {
Request Prim tives(box);

}

Request Pri m ti ves convertsthe solid into primitives (G4Pol yhedr on) andinvokesAddPri ni ti ve:

Begi nPrimtives(*fpQbj ect Transf ormati on) ;
pPol yhedron = sol i d. Get Pol yhedron();
AddPri nitive(*pPol yhedron);
EndPrimtives();

The resulting default sequence for aAAPhysi cal Vol uneMddel isshownin Figure 3.10.

46

Extending Toolkit Functionality

Drawvi ew() ;
| -->ProcessView);
| -->ProcessScene();
- - >Begi nMbdel i ng() ;
-->pMbdel -> DescribeYoursel f To(*this);
| -->sceneHandl er . PreAddSol i d(t heAT, *pVisAttribs);
| -->pSol - >Descri beYour sel f To(sceneHandl er);
| | - ->sceneHandl er. AddSol i d(*thi s);
| | -->Request Prinitives(solid);
| |-->BeginPrimtives (*fpObjectTransformation);
| | -->pPol yhedron = solid. Get Pol yhedron();
| | -->AddPrimitive(*pPol yhedron);
| | -->EndPrinmitives();
| - - >sceneHandl er . Post AddSol i d();
- ->F

I
|
I
|
I
|
I
|
I
|
I
| ndModel i ng();

Figure 3.10. The default sequencefor a APhysi cal Vol uneModel }

Note the sequence of calls at the core:

sceneHandl er . PreAddSol i d(t heAT, *pVisAttri bs);
pSol - >Descri beYour sel f To(sceneHandl er) ;
| - - >sceneHandl er. AddSol i d(*t hi s);
| -->RequestPrimtives(solid);
|-->BeginPrimtives (*fpCbjectTransformation);
| -->pPol yhedron = solid. Get Pol yhedron();
| -->AddPrimtive(*pPol yhedron);
| -->EndPrimtives();
sceneHandl er . Post AddSol i d() ;

isreduced to

sceneHandl er. PreAddSol i d(t heAT, *pVisAttribs);
pSol - >Descri beYour sel f To(sceneHandl er) ;

| -->sceneHandl er . AddSol i d(*t hi s);

sceneHandl er . Post AddSol i d() ;

if the scene handler implementsits own AddSol i d. Moreover, the sequence

Begi nPrimitives (*fpQObjectTransfornation);
AddPri nitive(*pPol yhedron);
EndPrimtives();

can be invoked without aprior Pr eAddSol i d, etc. Theflag f Pr ocessi ngSol i d will befalsefor the last
case. The possibility of any or all of these three scenarios occurring, for both permanent and transient objects,
affects the implementation of a scene handler if there is any attempt to build a graphical database. This is
reflected in the templates XXXSt or ed and XXXSG described in Section 3.6.1.1.1. Transients are discussed in

Section 3.6.1.6.

(ATraj ectori eshbdel At end of event, the trgjectory container is unpacked and, for each trgjectory,
sceneHandl er . AddConpound called. The scene handler may implement this virtual function or inherit:

voi d GAVSceneHand! er: : AddConpound (const AVIrajectory& traj) {
traj.Drawlraj ectory(((GA4Traj ectori eshdel *) f pModel) - >Get Dr awi nghbde()) ;
}

Similarly, the user may implement Dr awTr aj ect o7y or inherit:

void AVTrajectory::Drawlrajectory(&int i node) const {

Extending Toolkit Functionality

pWi sManager - >Di spat chToMbdel (*this, i_node);
}
}

Thence, the Dr aw method of the current trajectory model isinvoked (see Section 3.6.2 for details on trajectory
models), which in turn, invokes Dr aw methods of the visualisation manager. The resulting default sequence for
aGATr aj ect ori esModel isshownin Figure 3.11.

Dr awVvi ew() ;
| -->ProcessView();

| -->ProcessScene();

| - - >Begi nMbdel i ng() ;

| -->pMbdel -> Descri beYoursel f To(*this);
| | - ->AddConpound(traj ectory);
| |-->trajectory. Drawlrajectory(...);
| | -->Di spat chToMbdel (...);
| | -->nmodel ->Draw . ..);
| | -->GAVi sManager::Draw . ..);
| | -->Begi nPrimtives(objectTransform;
| |-->AddPrimitive(...);
| |-->EndPrimtives();
| -->EndModel i ng();

Figure 3.11. Thedefault sequencefor a &APhysi cal Vol uneModel }

3.6.1.6. Dealing with transient objects

Any visualisable object not defined in the run-duration part of a scene is treated as ““transient”. This includes
trajectories, hits or anything drawn by the user through the GAVWVi sManager user-level interface (unless as
part of a run-duration model implementation). A flag, f ReadyFor Tr ansi ent s}, is maintained by the scene
handler. In fact, its normal stateist r ue, and only temporarily, during handling of the run-duration part of the
scene, isit settof al se -- see description of ProcessScene, Section 3.6.1.5.

If the driver supports a graphical database, it is smart to distinguish transient and permanent objects. In this case,
every Add method of the scene handler must be transient-aware. In some cases, it is enough to open a graphi-
cal data base component in Begi nPri mi ti ves,fill itin AddPri mi ti ve and closeit appropriately in End-
Primtives.Inothers, initidisationisdonein Begi nvbdel i ng and consolidationin EndMbdel i ng -- see
FAOpenGSt or edSceneHandl er . If any AddSol i d method is implemented, then the graphical data base
component should be opened in Pr eAddSol i d, protecting against double opening, for example,

voi d GAXXXSt or edSceneHandl er: : Begi nPrimtives
(const ATr ansf or m8D& obj ect Transf or mati on) {
GAVSceneHandl er: : Begi nPrinitives(obj ect Transformation);
/1 1f thread of control has already passed through PreAddSoli d,
// avoi d opening a graphical data base conponent again.
if (!fProcessingSolid) {

for other solids.

Thereason for thisdistinction is that at end of run the user typically wants to display trajectories on aview of the
detector, then, at the end of the next event 8 , erase the old and see new trajectories. The visualisation manager
messages the scene handler with Cl ear Tr ansi ent St or e just before drawing the trajectories to achieve this.

If the driver does not have a graphical database or does not distinguish between transient and persistent objects,
it must emulate Cl ear Tr ansi ent St or e. Typicaly, it must erase everything, including the detector, and re-
draw the detector and other run-duration objects, ready for the transients to be added. File-writing drivers must
rewind the output file. Typically:

voi d GAHepRepFi | eSceneHandl er:: Cl ear Transi ent Store() {

3 Thereisan option to accumulate trajectories across events and runs -- see commands/ vi s/ scene/ endOf Event Acti on and/ vi s/
scene/ endf RunActi on.

48

Extending Toolkit Functionality

G4VSceneHandl er: : O ear Transi ent Store();
I/l This is typically called after an update and before drawi ng hits
/1 of the next event. To sinulate the clearing of "transients"
/1 (hits, etc.) the detector is redrawn...
if (fpViewer) {
fpViewer -> SetView);
fpViewer -> CearView);
fpVi ewer -> Drawview();

}
}

Cl ear Vi ew rewinds the output file and Dr awVi ew re-draws the detector, etc. (For smart drivers, Dr awvi ew
is smart enough to know not to redraw the detector, etc., unless the view parameters have changed significantly
-- see Section 3.6.1.3)

3.6.1.7. More about scene models

Scene models conform to the G4VModel abstract interface. Available models are listed and described there in
varying detail. Section 3.6.1.5 describes their use in some common command actions.

In the design of anew model, care should be taken to handle the possibility that the GAMbdel i ngPar anet er s
pointer is zero. Currently the only use of the modeling parameters is to communicate the culling policy. Most
models, therefore, have no need for modeling parameters.

3.6.2. Enhanced Trajectory Drawing

3.6.2.1. Creating a new trajectory model

New trajectory models must inherit from G4V TrajectoryModel and implement these pure virtual functions:

virtual void Drawconst AVIrajectory& G4int i_node = 0,
const (4bool & visible = true) const = 0;
virtual void Print(std::ostream& ostr) const = O;

To use the new model directly in compiled code, simply register it with the G4VisManager, eg:
G4Vi sManager * vi sManager = new (4Vi sExecuti ve;
vi sManager->Initialise();
/] Create custom nodel
MyCust onilr aj ect or yModel * nmyModel =
new MyCust onilr aj ect or yModel (" cust ont') ;

/] Configure it if necessary then register with 4Vi sManager

vi sManager - >Regi st er Mbdel (myModel) :
3.6.2.2. Adding interactive functionality
Additional classes need to be written if the new model is to be created and configured interactively:
* Messenger classes

Messengers to configure the model should inherit from G4V Model Command. The concrete trajectory model
type should be used for the template parameter, eg:

cl ass GAMyCust omivbdel Command
: public AVMWbdel Command<GATr aj ect or yDr awByParti cl el D> {

A number of general use templated commands are available in G4Maodel CommandsT .hh.
» Factory class

49

Extending Toolkit Functionality

A factory class responsible for the model and associated messenger creation must also be written. The factory
should inherit from G4V M odel Factory. The abstract model type should be used for the template parameter, eg:

cl ass ATr aj ect or yDr awByChar geFact ory
: public AVMbdel Fact or y<GAVTr aj ect or yMobdel > {

The model and associated messengers should be constructed in the Create method. Optionally, a context object
can aso be created, with its own associated messengers. For example:

Model AndMessenger s
GATr aj ect oryDrawByParti cl el DFactory: :
Creat e(const GAString& pl acement, const (AString& nane)

{

/] Create default context and nodel
G4Vi sTraj Context* context = new AVi sTraj Context ("default");
GATr aj ect oryDrawByParticl el D* nodel =

new GATr aj ect oryDrawByParti cl el D(name, context);

/1 Create nessengers for default context configuration
AddCont ext Msgr s(cont ext, nessengers, placenent+"/"+nane);

/] Create nessengers for drawer
nmessenger s. push_back(new
GAModel CndSet St ri ngCol our <GATr aj ect or yDr awByParti cl el D>
(rmodel , placenent));
nmessenger s. push_back(new
GAMbdel CdSet Def aul t Col our <GATr aj ect or yDr awByParti cl el D>
(rmodel , pl acenent));
nmessenger s. push_back(new
GAModel CndVer bose<GATr aj ect or yDr awByPar ti cl el D>
(rmodel , placenent));

return Mdel AndMessenger s(nodel, messengers);

The new factory must then be registered with the visualisation manager. This should be done by overriding the
G4VisManager::RegisterM odel Factory method in a subclass. See, for example, the G4VisManager implementa-
tion:

GAVi sExecut i ve: : Regi st er Model Factori es()
{

Regi st er Model Fact ory(new GATr aj ect or yDr awByPar ti cl el DFactory());
}

3.6.3. Trajectory Filtering

3.6.3.1. Creating a new trajectory filter model

New trajectory filters must inherit at least from G4VFilter. The models supplied with the Geant4 distribution
inherit from G4SmartFilter, which implements some specialisations on top of G4V Filter. The models implement
these pure virtual functions:

/] Evaluate nmethod inplenmented in subcl ass
virtual G4bool Eval uate(const T& = O;

/1 Print subclass configuration
virtual void Print(std::ostream& ostr) const = O;

To use the new filter model directly in compiled code, simply register it with the G4VisManager, eg:

50

Extending Toolkit Functionality

G4Vi sManager * vi sManager = new (4Vi sExecuti ve;
vi sManager->Initialise();

/'l Create custom nodel
MyCust onilr aj ect or yFi | t er Model * nyMbdel =
new MyCust onilr aj ect oryFi | t er Model (" custont');
/] Configure it if necessary then register with 4Vi sManager

VI .sManager->Regi st er Model (nyModel) ;
3.6.3.2. Adding interactive functionality

Additional classesneed to bewrittenif the new model isto be created and configured interactively. The mechanism
isexactly the same asthat used to create enchanced trajectory drawing models and associated messengers. Seethe
filter factoriesin G4TrajectoryFilterFactories for example implementations.

3.6.4. Other Resources

The following sections contain various information for extending other class functionalities of Geant4 visualisa-
tion:

» User's Guide for Application Developers, Chapter 8 - Visualization
» User's Guide for Toolkit Developers, Object-oriented Analysis and Design of Geant4 Classes, Section 2.12.

[Status of this chapter]

03.12.05 “"Enhanced Trajectory Drawing" added by Jane Tindley.

03.12.05 Creating a new visualisation driver" (from Part 11) by John Allison.

09.01.06 *"Creating a new visualisation driver" considerably expanded by John Allison.
20.06.06 Some sections improved or added from draft vis paper. John Allison.

Dec. 2006 Conversion from latex to Docbook verson by K. Amako

51

Bibliography
[Gammal995 | E. Gamma. Design Patterns. Addison-Wesley Professional Computing Series. 1995 .

[QGSM] Kaidalov A. B., Ter-Martirosyan. Phys. Lett.. B117 (1982) 247.

[ENDFForm] Data Formats and Procedures for the Evaluated Nuclear Data File . Nationa Nuclear Data
Center, Brookhaven National Laboratory, Upton, NY, USA. .

[QMD] “For example: VUU and (R)QMD model of high-energy heavy ion collisions”. H. Stocker et al.. Nucl.
Phys.. A538, 53c-64c (1992).

[CHIPS] P.V. Degtyarenko, M.V. Kossov, H.P. Wellisch. Eur. Phys J.. A 8, 217-222 (2000).
[VNI] Klaus Geiger. Comput. Phys. Commun.. 104, 70-160 (1997). Brookhaven. BNL-63762.

[PYTHIATY] “Pythia version 7-0.0 -- a proof-of-concept version”. M. Bertini, L. Lonnblad, T. Sorstrand. . LU-
TP 00-23, hep-ph/0006152. May 2000.

52

