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Preface

The development of the Linux USB subsystem started in 1997 and in the mean-
time it was redesigned many times. This implied various changes of its internal
structure and its API too. So it is even hard for experienced device driver de-
velopers to keep up to date with all ongoing discussions and current changes.

This document should give detailed information about the current state of
the USB subsystem and its API for USB device drivers. The first section will
deal with the basics of USB devices. You will learn about different types of
devices and their properties. Going into detail you will see how USB devices
communicate on the bus. The second section gives an overview of the Linux
USB subsystem [2] and the device driver framework. Then the API and its data
structures will be explained step by step. The last section of this document
contains a reference of all API calls and their return codes.
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1 The Universal Serial Bus

In 1994 an alliance of four industrial partners (Compaq, Intel, Microsoft and
NEC) started to specify the Universal Serial Bus (USB). The bus was originally
designed with these intentions:

• Connection of the PC to the telephone

• Ease-of-use

• Port expansion

The specification (version 1.0) was first released in january 1996 and the
latest official version 1.1 was released in september 1998 [4]. The document
is still under development and a version 2.0 was announced in 1999. More
information and all specification papers can be found in [1]. The USB is strictly
hierarchical and it is controlled by one host. The host uses a master / slave
protocol to communicate with attached USB devices. This means that every
kind of communication is initiated by the host and devices cannot establish any
direct connection to other devices. This seems to be a drawback in comparison
to other bus architectures but it is not because the USB was designed as a
compromise of costs and performance. The master / slave protocol solves
implicitly problems like collision avoidance or distributed bus arbitration. The
current implementation of the USB allows 127 devices to be connected at the
same time and the communication bandwidth is limited to 12Mbit/s.

1.1 Host Controllers

Today the USB host controller is integrated on most motherboard chipsets.
Older boards which are not equipped with such a controller can be upgraded
by PCI cards with such host controllers. All these controllers are compatible
with either the Open Host Controller Interface (OHCI by Compaq, Microsoft
and National Semiconductor) or the Universal Host Controller Interface (UHCI
by Intel [7]) standard. Both types have the same capabilities and USB devices
do not have to care about the host controller. Basically the hardware of UHCI
is simpler and therefore it needs a more complex device driver, which could
cause slightly more CPU load.

1.2 USB Devices and Transfer Characteristics

There are different types of USB devices as they can be used for different
purposes. First a device can be self powered, bus powered or both. The
USB can provide a power supply up to 500mA for its devices. If there are
only bus powered devices on the bus the maximum power dissipation could be
exceeded and therefore self powered devices exist. They need to have their
own power supply. Devices that support both power types can switch to self
powered mode when attaching an external power supply.
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Figure 1: USB Topology

Even the maximum communication speed can differ for particular USB de-
vices. The USB specification decides between low speed and full speed de-
vices. Low speed devices (such as mice, keyboards, joysticks etc.) communi-
cate at 1.5MBit/s and have only limited capabilities. Full speed devices (such
as audio and video systems) can use up to 90% of the 12Mbit/s which is about
10Mbit/s including the protocol overhead.

1.2.1 Hubs

Physically there exist a number of USB ports at the rear panel of a computer.
These ports can be used to attach normal devices or a hub. A hub is a USB
device which extends the number of ports (i.e. 2-8) to connect other USB
devices. The maximum number of attachable devices is reduced by the number
of hubs on the bus. Hubs are self- and/or bus powered full speed devices.

Normally the physical ports of the host controller are handled by a virtual
root hub. This hub is simulated by the host controller’s device driver and helps
to unify the bus topology. So every port can be handled in the same way by the
USB subsystem’s hub driver (see figure 1).

1.2.2 Data Flow Types

The communication on the USB is done in two directions and uses 3 different
transfer types. Data directed from the host to a device is called downstream or
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OUT transfer. The other direction is called upstream or IN transfer. Depending
on the device type different transfer variants are used:

• Control transfers are used to request and send reliable short data pack-
ets. It is used to configure devices and every one is required to support a
minimum set of control commands. Here is a list of standard commands:

– GET STATUS

– CLEAR FEATURE

– SET FEATURE

– SET ADDRESS

– GET DESCRIPTOR

– SET DESCRIPTOR

– GET CONFIGURATION

– SET CONFIGURATION

– GET INTERFACE

– SET INTERFACE

– SYNCH FRAME

Further control commands can be used to transfer vendor specific data.

• Bulk transfers are used to request or send reliable data packets up to
the full bus bandwidth. Devices like scanners or scsi adapters use this
transfer type.

• Interrupt transfers are similar to bulk transfers which are polled period-
ically. If an interrupt transfer was submitted the host controller driver will
automatically repeat this request in a specified interval (1ms - 255ms).

• Isochronous transfers send or receive data streams in realtime with
guaranteed bus bandwidth but without any reliability. In general these
transfer types are used for audio and video devices.

1.3 Enumeration and Device Descriptors

Whenever a USB device is attached to the bus it will be enumerated by the
USB subsystem - i.e an unique device number (1-127) is assigned and then the
device descriptor is read. Such a desciptor is a data structure which contains
information about the device and its properties. The USB standard defines a
hierarchy of descriptors (see figure 2).
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Figure 2: USB Descriptor Hierarchy

1.3.1 Standard Descriptors

• A Device Descriptor describes general information about a USB device.
It includes information that applies globally to the device and all of the
device’s configurations. A USB device has only one device descriptor.

• The Configuration Descriptor gives information about a specific device
configuration. A USB device has one or more configuration descriptors.
Each configuration has one or more interfaces and each interface has
zero or more endpoints. An endpoint is not shared among interfaces
within a single configuration unless the endpoint is used by alternate
settings of the same interface. Endpoints may be shared among in-
terfaces that are part of different configurations without this restriction.
Configurations can be activated exclusively by the standard control trans-
fer set configuration. Different configurations can be used to change
global device settings like power consumption.

• An Interface Descriptor describes a specific interface within a configu-
ration. A configuration provides one or more interfaces, each with zero
or more endpoint descriptors describing a unique set of endpoints within
the configuration. An interface may include alternate settings that allow
the endpoints and/or their characteristics to be varied after the device
has been configured. The default setting for an interface is always alter-
nate setting zero. Alternate settings can be selected exclusively by the
standard control transfer set interface. For example a multifunctional
device like a video camera with internal microphone could have three
alternate settings to change the bandwidth allocation on the bus.

1. Camera activated

2. Microphone activated
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Device Class Example Device
Display Monitor
Communication Modem
Audio Speakers
Mass storage Hard drive
Human interface Data glove

Table 1: USB Device Classes

3. Camera and microphone activated

• An Endpoint Descriptor contains information required by the host to
determine the bandwidth requirements of each endpoint. An endpoint
represents a logical data source or sink of a USB device. Endpoint zero
is used for all standard control transfers and there is never a descriptor
for this endpoint. The USB specification [4] uses the term pipe for an
endpoint too.

• String Descriptors are optional and provide additional information in hu-
man readable Unicode format. They can be used for vendor and device
names or serial numbers.

1.3.2 Device Classes

The standard device and interface descriptors contain fields that are related to
classification: class, sub-class and protocol. These fields may be used by a
host system to associate a device or interface to a driver, depending on how
they are specified by the class specification [5]. Valid values for the class fields
of the device and interface descriptors are defined by the USB Device Working
Group (see also Figure 1).

Grouping devices or interfaces together in classes and then specifying the
characteristics in a Class Specification allows the development of host software
which can manage multiple implementations based on that class. Such host
software adapts its operation to a specific device or interface using descriptive
information presented by the device. A class specification serves as a frame-
work defining the minimum operation of all devices or interfaces which identify
themselves as members of the class.

1.3.3 Human Interface Devices (HID)

The HID class [6] consists primarily of devices that are used by humans to con-
trol the operation of computer systems. Typical examples of HID class devices
include:

• Keyboards and pointing devices for example, standard mouse devices,
trackballs, and joysticks.



1 THE UNIVERSAL SERIAL BUS 9

• Front-panel controls for example: knobs, switches, buttons, and sliders.

• Controls that might be found on devices such as telephones, VCR remote
controls, games or simulation devices for example: data gloves, throttles,
steering wheels, and rudder pedals.

1.4 USB Device Drivers

Finding device drivers for USB devices presents some interesting situations.
In some cases the whole USB device is handled by a single device driver. In
other cases, each interface of the device has a separate device driver.
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2 The Linux USB Subsystem

In Linux there exists a subsystem called “The USB Core” with a specific API to
support USB devices and host controllers. Its purpose is to abstract all hard-
ware or device dependent parts by defining a set of data structures, macros
and functions.

The USB core contains routines common to all USB device drivers and host
controller drivers. These functions can be grouped into an upper and a lower
API layer. As shown in figure 3 there exists an API for USB device drivers
and another one for host controllers. The following section concentrates on the
USB device driver layer, because the development for host controller drivers is
already finished.

This section will give an overview of the USB framework by explaining entry
points and the usage of API functions. If you are not familar with linux device
drivers the following section might not be very useful. Appropriate literature can
be found here [8], [9].

2.1 The USB Device Driver Framework

USB devices drivers are registered and deregistered at the subsystem. A driver
must register 2 entry points and its name. For specific USB devices (which are
not suitable to be registered at any other subsystem) a driver may register a
couple of file operations and a minor number. In this case the specified minor
number and the 15 following numbers are assigned to the driver. This makes
it possible to serve up to 16 similar USB devices by one driver. The major
number of all USB devices is 180.
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struct usb_driver {
const char *name;

void * (*probe)(struct usb_device *, unsigned int,
const struct usb_device_id *id_table);
void (*disconnect)(struct usb_device *, void *);

struct list_head driver_list;

struct file_operations *fops;
int minor;
struct semaphore serialize;
int (*ioctl) (struct usb_device *dev, unsigned int code,
void *buf);
const struct usb_device_id *id_table;
};

Figure 4: usb driver structure

2.1.1 Framework Data Structures

All USB related functions or data structures follow the same naming convention
and start with usb . Figure 4 shows the structure needed to register a USB
device driver at the subsystem.

• name: Usually the name of the module.

• probe: The entry point of the probe function.

• disconnect: The entry point of the disconnect function.

• driver list: For internal use of the subsystem - initialize to
{NULL,NULL}

• fops: The usual list of file operations for a driver

• minor: The base minor number assigned to this device (the value has to
be a multiple of 16)

• serialize:

• ioctl:

• id table:



2 THE LINUX USB SUBSYSTEM 12

void *probe(struct usb_device *dev, unsigned int interface,
const struct usb_device_id *id_table)
{
struct driver_context *context;

%TODO
if (dev->descriptor.idVendor == 0x0547 &&

dev->descriptor.idProduct == 0x2131 &&
interface == 1 ) {
MOD_INC_USE_COUNT;

/* allocate resources for this instance */
context=allocate_driver_resources();

/* return pointer to instance context */
return context;

}

return NULL;
}

Figure 5: A simple probe function

2.1.2 Framework Entry Points

The USB driver framework adds two entry points to normal device drivers:

• void *probe(struct usb device *dev, unsigned int interface,
const struct usb device id *id table); This entry point is called
whenever a new device is attached to the bus. Then the device driver
has to create a new instance of its internal data structures for the new
device.

The dev argument specifies the device context, which contains pointers
to all USB descriptors. The interface argument specifies the interface
number. If a USB driver wants to bind itself to a particular device and
interface it has to return a pointer. This pointer normally references the
device driver’s context structure.

Probing normally is done by checking the vendor and product identifica-
tions or the class and subclass definitions. If they match the interface
number is compared with the ones supported by the driver. When prob-
ing is done class based it might be necessary to parse some more USB
descriptors because the device properties can differ in a wide range.

A simple probe routine is shown in figure 5.

• void disconnect(struct usb device *dev, void *drv context);
This function is called whenever a device which was served by this driver
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static void dabusb_disconnect (struct usb_device *usbdev, void *drv_context)
{
/* get a pointer to our driver_context */
struct driver_context *s = drv_context;

/* set remove pending flag */
s->remove_pending = 1;

/* wake up all sleeping parts of the driver */
wake_up (&s->wait);

/* wait until driver is ready to release device associated structures */
sleep_on (&s->remove_ok);

/* deallocate resources used by this instance */
free_driver_resources(s);

MOD_DEC_USE_COUNT;
}

Figure 6: A simple disconnect function

is disconnected.

The argument dev specifies the device context and the driver context
returns a pointer to the previously registered driver context of the probe
function. After returning from the disconnect function the USB framework
completly deallocates all data structures associated with this device. So
especially the usb device structure must not be used any longer by the
usb driver.

A simple disconnect function is shown in figure 6.

2.1.3 Framework Functions

• int usb register(struct usb driver *drv);

This function is used to register a new USB device driver at the subsys-
tem. The argument drv points to a completely initialized usb driver (see
figure 4) structure. On success 0 is returned otherwise an error value is
returned.

• void usb deregister(struct usb driver *drv);

This function deregisters a formerly registerd USB device driver at the
subsystem.
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• void usb driver claim interface(struct usb driver *driver,
struct usb interface *iface, void *drv context);

This function is intended to be used by USB device drivers that need to
claim more than one interface on a device at once when probing. The ar-
gument driver points to a completely initialized usb driver structure.
The iface argument points to a usb interface structure which is part
of the usb config descriptor which is accesible from the usb device
structure (given in the probe function). The drv context pointer nor-
mally references the device driver’s context structure (see return value of
the probe function).

• int usb interface claimed(struct usb interface *iface);

This function is used to check if another device driver already has claimed
the specified interface. The return value is 0 if the interface was not
claimed by any driver.

• void usb driver release interface(struct usb driver *driver,
struct usb interface *iface);

If a driver wants to release a previously claimed interface it has to call
this function. In the disconnect function you do not have to release any
interfaces that were additionally claimed in the probe function.

• const struct usb device id *usb match id(
struct usb device *dev, struct usb interface *interface,
const struct usb device id *id);

2.2 Configuring USB Devices

The API includes a set of functions to select or query descriptors, configura-
tions and alternate settings of devices. All these standard operations are done
via control transfers to the device.

2.2.1 Descriptor Data Structures

The Linux USB subsystem describes the hierarchical structure of descriptors
by extending or embedding the standard USB descriptors with or in a subsys-
tem specific structure. This structure helps storing pointers to the selected
configuration and interfaces.

The elements of these structures are only explained in detail as far as they
are necessary for subsequent API calls. Detailed information about the de-
scriptors can be found in usb.h and [4] section 9.5.

struct usb_device{
...
struct usb_config_descriptor *actconfig;/* the active configuration */
...
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struct usb_device_descriptor descriptor;/* Descriptor */
struct usb_config_descriptor *config; /* All of the configs */

}

The usb device structure is the root of all USB specific descriptors. Sometimes
it is necessary to parse the descriptors within a driver to configure the device
or to setup transfer requests properly.

• Accessing all available configuration descriptors can be done like this:

for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
struct usb_config_descriptor *cfg = &dev->config[i];
...

}

• Accessing all available interface descriptors of a particular configuration
is done like this:

for (j = 0; j < cfg->bNumInterfaces; j++) {
struct usb_interface *ifp = &cfg->interface[j];
...

}

To start the parsing of the active configuration simply use the
dev->actconfig pointer.

• Accessing all alternate settings of a particular interface can be done like
this:

for (k = 0; k < ifp->num_altsetting; k++) {
struct usb_interface_descriptor *as = &ifp->altsetting[k];
...

}

The active alternate setting can be accessed via
*as = &ifp->altsetting[ifp->act altsetting]

• Accessing all endpoint descriptors of a particular alternate setting can
done like this:

for(l = 0; l < as->bNumEndpoints; l++) {
struct usb_endpoint_descriptor *ep=&as->endpoint[k];
...

}
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2.2.2 Standard Device Requests

To query or set a particular configuration or alternate setting there exist a num-
ber functions. These commonly used functions setup standard device requests
(control transfers for a specified device:

• int usb set configuration(struct usb device *dev, int configuration);

To activate a particular configuration use this function.
The argument is of
0 <= configuration < dev->descriptor.bNumConfigurations.
Configuration 0 is selected by default after the device is attached to the
bus.

• int usb set interface(struct usb device *dev, int interface,
int alternate);

This function activates an alternate setting of a specified interface. The
argument interface is of
0 <= interface < dev->actconfig->bNumInterfaces.
The argument alternate is of
0 <= alternate < dev->actconfig->interface[interface].num altsetting

• int usb get device descriptor(struct usb device *dev);

This function rereads the complete descriptor tree from a particular de-
vice. It is called automatically whenever a device is attached to the bus
or it may be called whenever a USB descriptor has changed.

• int usb get descriptor(struct usb device *dev,
unsigned char desctype, unsigned char descindex, void *buf,
int size);

Single USB descriptors can be read as raw data from a device. This
function can be used to parse extended or vendor specific descriptors.
The arguments desctype and descindex are documented in [4] section
9.4.3 and 9.5.

• int usb get string(struct usb device *dev,
unsigned short langid, unsigned char index, void *buf,
int size);

If a device, configuration or interface descriptor references a string in-
dex value (see [4] section 9.6.5) this function can be used to retrieve the
string descriptor. According to the specification USB strings are coded
as Unicode. If successful the function returns 0 otherwise an error code
is returned.

• int usb string(struct usb device *dev, int index, char *buf,
size t size);

This function simplifies usb get string by converting Unicode strings
into ASCII strings.
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• int usb get status(struct usb device *dev, int type,
int target, void *data);

This USB control request is documented in [4] section 9.4.5.

• int usb clear halt(struct usb device *dev, int pipe);

If an endpoint is stalled (see [4] chapter 8.4.4) call this function to clear
the STALL condition. STALL indicates that a function is unable to transmit
or receive data, or that a control pipe request is not supported. The
argument endpoint defines a pipe handle.

• int usb get protocol(struct usb device *dev, int ifnum);

This HID USB control request is documented in [6] section 7.2.5.

• int usb set protocol(struct usb device *dev, int protocol,
int ifnum); This HID USB control request is documented in [6] section
7.2.6.

• int usb get report(struct usb device *dev,
unsigned char type, unsigned char id, int ifnum, void *buf,
int size);

This HID USB control request is documented in [6] section 7.2.1

• int usb set idle(struct usb device *dev, int ifnum,
int duration, int report id);

This HID USB control request is documented in [6] section 7.2.4

2.3 USB Transfers

This section will give an overview of all data structures, macros and functions
related to data transfers on the bus. Further it will be explained how to actually
set up, submit and process transfer requests.

2.3.1 Transfer Data Structures & Macros

The Linux USB subsystem uses only one data transfer structure called USB
Request Block (URB). This structure contains all parameters to setup any USB
transfer type. All transfer requests are sent asynchronously to the USB core
and the completion of the request is signalled via a callback function.

As shown in figure 7 the URB structure contains elements common to all
transfer types (marked with C). Elements marked with > are input parame-
ters, M means mandatory and O means optional. Elements marked with <
are return values. Elements marked with T are transient parameters (input and
output). All non common elements are marked on three columns which repre-
sent control, interrupt and isochronous transfers. A X marks this element to be
used with the associated transfer type.
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typedef struct
{
unsigned int offset; // offset to the transfer_buffer
unsigned int length; // expected length
unsigned int actual_length;// actual length after processing
unsigned int status; // status after processing

} iso_packet_descriptor_t, *piso_packet_descriptor_t;

struct urb;
typedef void (*usb_complete_t)(struct urb *);

typedef struct urb
{

spinlock_t lock;
void *hcpriv; // private data for host controller (don’t care)
struct list_head urb_list; // list pointer to all active urbs (don’t care)

>CO struct urb* next; // pointer to next URB
>CM struct usb_device *dev; // pointer to associated USB device
>CM unsigned int pipe; // pipe information
<C int status; // returned status
TCO unsigned int transfer_flags;//USB_DISABLE_SPD|USB_ISO_ASAP|USB_URB_EARLY_COMPLETE
>CM void *transfer_buffer; // associated data buffer
>CM int transfer_buffer_length; // data buffer length
<C int actual_length; // actual data buffer length

int bandwidth; // allocated bandwidth
<X-- unsigned char *setup_packet;// setup packet (control only)
T-XX int start_frame; // start frame (iso/irq only)
>--X int number_of_packets; // number of packets in this request (iso only)
>-X- int interval; // polling interval (irq only)
<--X int error_count; // number of errors in this transfer (iso only)
>XXX int timeout; // timeout in jiffies

>CO void *context; // context for completion routine
>CO usb_complete_t complete; // pointer to completion routine

>--X iso_packet_descriptor_t iso_frame_desc[0]; // optional iso descriptors
} urb_t, *purb_t;

Figure 7: URB Structure
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The URB structure might look confusing but this is just an overview of its
versatility. There are several helping macros to setup the right parameters but
first the common elements will be explained as they are very important.

• dev [mandatory input parameter]

This element is a pointer to the usb device structure (introduced in the
framework function probe section 2.1.2).

• pipe [mandatory input parameter]

The pipe element is used to encode the endpoint number and properties.
There exist several macros to create an appropriate pipe value:

– pipe=usb sndctrlpipe(dev,endpoint)

pipe=usb rcvctrlpipe(dev,endpoint)

Creates a pipe for downstream (snd) or upstream (rcv) control trans-
fers to a given endpoint. The argument dev is a pointer to a
usb device structure. The argument endpoint is usually 0.

– pipe=usb sndbulkpipe(dev,endpoint)

pipe=usb rcvbulkpipe(dev,endpoint)

Creates a pipe for downstream (snd) or upstream (rcv) bulk transfers
to a given endpoint. The endpoint is of 1 <= endpoint <= 15
(depending on active endpoint descriptors)

– pipe=usb sndintpipe(dev,endpoint)

pipe=usb rcvintpipe(dev,endpoint)

Creates a pipe for downstream (snd) or upstream (rcv) in-
terrupt transfers to a given endpoint. The endpoint is of
1 <= endpoint <= 15 (depending on active endpoint descrip-
tors)

– pipe=usb sndisopipe(dev,endpoint)

pipe=usb rcvisopipe(dev,endpoint)

Creates a pipe for downstream (snd) or upstream (rcv) isochronous
transfers to a given endpoint. The endpoint is of 1 <= endpoint <=
15 (depending on active endpoint descriptors)

• transfer buffer [mandatory input parameter]

This element is a pointer to the associated transfer buffer which con-
tains data transferred from or to a device. This buffer has to be allo-
cated as a non-pageable contiguous physical memory block (simply use
void *kmalloc(size t, GFP KERNEL);).

• transfer buffer length [mandatory input parameter]

This element specifies the size of the transfer buffer in bytes. For inter-
rupt and control transfers the value has to be less or equal the maximum
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void complete( struct urb *purb )
{

struct device_context *s = purb->context;
/* wake up sleeping requester */
wake_up (&s->wait);

}

Figure 8: A simple completion handler

packet size of the associated endpoint. The maximum packet size can be
found as element wMaxPacketSize of an endpoint descriptor. Because
there is no endpoint descriptor for the default endpoint 0 which is used
for all control transfers the maximum packet size can be found as element
maxpacketsize of the usb device structure.

Bulk transfers which are bigger than wMaxPacketSize are automatically
split into smaller portions.

• complete [optional input parameter]

As noted above the USB subsystem processes requests asynchronously.
This element allows to specify a pointer to a caller supplied handler func-
tion which is called after the request is completed. The purpose of this
handler is to finish the caller specific part of the request as fast as pos-
sible because it is called out of the host controller’s hardware interrupt
handler. This even implies all other restrictions that apply for code which
is written for interrupt handlers.

• context [optional input parameter]

Optionally a pointer to a request related context structure can be given.
Figure 8 shows a simple completion handler.

• transfer flags [optional input parameter and return value]

A number of transfer flags may be specified to change the behaviour
when processing the transfer request.

– USB DISABLE SPD

This flag disables short packets. A short packet condition occures if
an upstream request transfers less data than maximum packet size
of the associated endpoint.

– USB NO FSBR

– USB ISO ASAP

When scheduling isochronous requests this flag tells the host con-
troller to start the transfer as soon as possible. If USB ISO ASAP is
not specified a start frame has to be given. It is recommended to
use this flag if isochronous transfers do not have to be synchronized



2 THE LINUX USB SUBSYSTEM 21

with the current frame number. The current frame number is a 11
bit counter that increments every millisecond (which is the duration
of 1 frame on the bus). Further documentation can be found in [4]
sections 5.10.6 and 5.10.8.

– USB ASYNC UNLINK

When a URB has to be cancelled (see 2.3.2) it can be done syn-
chronously or asynchronously. Use this flag to switch on asyn-
chronous URB unlinking.

– USB TIMEOUT KILLED

This flag is only set by the host controller to mark the URB as killed
by timeout. The URB status carries the actual error which caused
the timeout.

– USB QUEUE BULK

This flag is used to allow queueing for bulk transfers. Normally only
one bulk transfer can be queued for an endpoint of a particular de-
vice.

• next [optional input parameter]

It is possible to link several URBs in a chain by using the next pointer.
This allows you to send a sequence of USB transfer requests to the USB
core. The chain has to be terminated by a NULL pointer or the last URB
has to be linked with the first. This allows to automatically reschedule a
number of URBs to transfer a continous data stream.

• status [return value]

This element carries the status of an ongoing or already finished re-
quest. After successfully sending a request to the USB core the status
is -EINPROGRESS. The successful completion of a request is indicated by
0. There exist a number of error conditions which are documented in
section 3.1.

• actual length [return value]

After a request has completed this element counts the number of bytes
transferred.

The remaining elements of the URB are specific to the transfer type.

• Bulk Transfers

No additional parameters have to be specified.

• Control Transfers

– setup packet [mandatory input parameter]
Control transfers consist of 2 or 3 stages (see [4] sections 5.5, 8.5.2).
The first stage is the downstream transfer of the setup packet. This
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element takes the pointer to a buffer containing the setup data. This
buffer has to be allocated as a non-pageable contiguous physical
memory block (simply use void *kmalloc(size t, GFP KERNEL);).

• Interrupt Transfers

– start frame [return value]
This element is returned to indicate the first frame number the inter-
rupt is scheduled.

– interval [mandatory input parameter] This element specifies the
interval in milliseconds for the interrupt transfer. Allowed values are
1 <= interval <= 255. Specifying an interval of 0ms causes an
one shot interrupt (no automatic rescheduling is done). You can find
the interrupt interval as element bInterval of an endpoint descriptor
for interrupt endpoints.

• Isochronous Transfers

– start frame [input parameter or return value]
This element specifies the first frame number the isochronous trans-
fer is scheduled. Setting the start frame allows to synchronize
transfers to or from a endpoint. If the USB ISO ASAP flag is speci-
fied this element is returned to indicate the first frame number the
isochonous transfer is scheduled.

– number of packets [mandatory input parameter]
Isochronous transfer requests are sent to the USB core as a set of
single requests. A single requests transfers a data packet up to the
maximum packet size of the specified endpoint (pipe). This element
sets the number of packets for the transfer.

– error count [return value]
After the request is completed (URB status is != -EINPROGRESS)
this element counts the number of errorneous packets. Detailed
information about the single transfer requests can be found in the
iso frame desc structure.

– timeout [input parameter] A timeout in jiffies can be specified to au-
tomatically remove a URB from the host controller schedule. If a
timeout happens the transfer flag USB TIMEOUT KILLED is set. The
actual transfer status carries the USB status which caused the time-
out.

– iso frame desc [mandatory input parameter]
This additional array of structures at the end of every isochronous
URB sets up the transfer parameters for every single request packet.

∗ offset [mandatory input parameter]
Specifies the offsetaddress to the transfer buffer for a single
request.



2 THE LINUX USB SUBSYSTEM 23

∗ length [mandatory input parameter]
Specifies the length of the data buffer for a single packet. If
length is set to 0 for a single request the USB frame is skipped
and no transfer will be initiated. This option can be used to syn-
chronize isochronous data streams (specified in [4] section 5.6).
∗ actual length [return value]

Returns the actual number of bytes transferred by this request.
∗ status [return value]

Returns the status of this request. Further documentation can
be found in section 3.1.

2.3.2 URB Functions

There are four functions of the USB core that handle URBs.

• purb t usb alloc urb(int iso packets);

Whenever a URB structure is needed this function has to be called. The
argument iso packets is used to specify the number of iso frame desc
structures at the end of the URB structure when setting up isochronous
transfers. If successful the return value is a pointer to a URB structure
preset to zero otherwise a NULL pointer is returned.

• void usb free urb (purb t purb);

To free memory allocated by usb alloc urb simply call this function.

• int usb submit urb(purb t purb);

This function sends a transfer request asynchronously to the USB core.
The argument purb is a pointer to a previously allocated and initialized
URB structure. If successful the return value is 0 otherwise an appropri-
ate error code is returned (see section 3.1). The function returns always
non-blocking and it is possible to schedule several URBs for different end-
points without waiting. On isochronous endpoints it is even possible to
schedule more URBs for one endpoint. This limitation is caused due to
error handling and retry mechanisms of the USB protocol (see [4] section
8.5)

• int usb unlink urb(purb t purb);

This function cancels a scheduled request before it is completed. The
argument purb is a pointer to a previously submitted URB structure. The
function can be called synchronously or asynchronously depending on
the transfer flag USB ASYNC UNLINK (see 2.3.1). Synchronously called the
function waits for 1ms and must not be called from an interrupt or com-
pletion handler. The return value is 0 if the function succeeds. Asyn-
chronously called the function returns immediately. The return value is
-EINPROGRESS if the function was successfully started. When calling
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usb unlink urb the completion handler is called after the function com-
pleted. The URB status is marked with -ENOENT (synchronously called)
or -ECONNRESET (asynchronously called).

usb unlink urb is also used to stop an interrupt transfer URB. As doc-
umented in sections 1.2.2, 2.3.1 interrupt transfers are automatically
rescheduled. Call usb unlink urb even for “one shot interrupts”.

2.3.3 URB Macros

To initialize URB structures for different transfer types there exist some macros:

• FILL CONTROL URB(purb, dev, pipe, setup packet,
transfer buffer, transfer buffer length, complete, context);

• FILL BULK URB(purb, dev, pipe, transfer buffer,
transfer buffer length, complete, context);

• FILL INT URB(purb, dev, pipe, transfer buffer,
transfer buffer length, complete, context, interval);

• FILL CONTROL URB TO();

• FILL BULK URB TO(); FILL BULK URB TO

The macros are self explaining - more documentation can be found in the in-
clude file usb.h.

2.3.4 Compatibility Wrappers

The USB core contains a number of higher level functions which were intro-
duced as compatibility wrappers for the older APIs. Some of these functions
can still be used to issue blocking control or bulk transfers.

• int usb control msg(struct usb device *dev,
unsigned int pipe, u8 request, u8 requesttype,
u16 value, u16 index, void *data, u16 size,

int timeout);

Issues a blocking standard control request. The arguments are according
to [4] section 9.3. A timeout in jiffies has to be specified. If successful the
return value is a positive number which represents the bytes transferred
otherwise an error code is returned.

• int usb bulk msg(struct usb device *usb dev,
unsigned int pipe, void *data, int len,
unsigned long *actual length, int timeout);

Issues a blocking bulk transfer. The standard arguments should be self
explaining. actual length is an optional pointer to a variable which car-
ries the actual number of bytes transferred by this request. A timeout in
jiffies has to be specified.
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2.4 Examples

A sample device driver is the dabusb driver which is part of the latest kernel
tree. The driver covers these topics:

• Supporting multiple devices

• Claiming an interface

• Setting configuration and alternate settings

• Submitting control and bulk URBs

• Reading an isochronous data stream

• Allowing hot unplug

You can find further information and updates on [3], [2]
Now some code fragments will follow to show how to actually program dif-

ferent transfers.
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3 Reference

3.1 Error Codes

This is the documentation of (hopefully) all possible error codes (and their inter-
pretation) that can be returned from the host controller driver and from usbcore.

3.1.1 Error codes returned by usb submit urb

• Non USB specific

0 URB submission successful
-ENOMEM No memory for allocation of internal structures

• USB specific

-ENODEV Specified USB-device or bus doesn’t exist
-ENXIO URB already queued
-EINVAL a) Invalid transfer type specified (or not supported)

b) Invalid interrupt interval (0<=n<256)
c) More than one interrupt packet requested

-EAGAIN a) Specified ISO start frame too early
b) (using ISO-ASAP) Too much scheduled for the future wait
some time and try again.

-EFBIG Too much ISO frames requested (currently uhci>900)
-EPIPE Specified pipe-handle is already stalled
-EMSGSIZE Endpoint message size is zero, do interface/alternate setting

3.1.2 URB Error Codes

• These error codes are returned in urb->status or
iso frame desc[n].status:

0 Transfer completed successfully
-ENOENT URB was canceled by unlink urb
-EINPROGRESS URB still pending, no results yet (actually no error until now)
-EPROTO a) Bitstuff error

b) Unknown USB error
-EILSEQ CRC mismatch
-EPIPE a) Babble detect

b) Endpoint stalled
-ENOST Buffer error
-ETIMEDOUT Transfer timed out, NAK
-ENODEV Device was removed
-EREMOTEIO Short packet detected
-EXDEV ISO transfer only partially completed look at individual frame sta-

tus for details
-EINVAL ISO madness, if this happens: Log off and go home
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3.1.3 Error Codes returned by USB Core Functions

• usb register():

-EINVAL Error during registering new driver.

• usb terminate bulk():

-ENODEV URB already removed.

• usb get */usb set *():

All USB errors (submit/status) can occur.
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