
The Interpretation of Errors

Fred JAMES
CERN, Geneva

June 16, 2004

Contents

Table of Contents I

List of Figures II

1 Interpretation of the errors on parameters as given by MINUIT 1

1.1 Function normalization and error definition 1

1.1.1 χ2 normalization . 2

1.1.2 Likelihood normalization . 3

1.2 Non–linearities: MIGRAD versus HESSE versus MINOS 4

1.2.1 Errors printed by MINUIT . 4

1.2.2 Errors after MIGRAD (or MINIMIZE) 5

1.2.3 Errors after HESSE . 6

1.2.4 Errors by MINOS . 6

1.3 Multiparameter errors . 7

1.3.1 The Error Matrix . 7

1.3.2 MINOS with several free Parameters 8

1.3.3 Probability content of confidence regions 8

References 13

I

List of Figures

1.1 MINOS errors for parameter 1 . 9

1.2 MINOS error confidence region for parameter 1 10

1.3 Rectangular confidence region for parameters 1 and 2 11

1.4 Optimal confidence region for parameters 1 and 2 12

II

1 Interpretation of the errors on parameters as

given by MINUIT

It often happens that the solution of a minimization problem using MINUIT is itself
straightforward, but the calculation or interpretation of the resulting parameter un-
certainties is considerably more complicated. The purpose of this chapter is to clarify
the most commonly encountered difficulties in parameter error determination. These
difficulties may arise in connection with any fitting program, are discussed here with
MINUIT terminology.

The most common causes of misinterpretation may be grouped into three categories:

• Proper normalization of the user–supplied χ2 or likelihood function, and ap-
propriate error definition.

• Non–linearities in the problem formulation, leading to different errors being
calculated by different techniques, such as MIGRAD, HESSE and MINOS.

• Multiparameter error definition and interpretation.

All these topics are discussed in some detail in Eadie et al.[1], which may be consulted
for further details.

1.1 Function normalization and error definition

In order to provide for full generality in the user–defined function value, the MINUIT

user has to define a normalization factor by implementing FCNBase::up(). The default
value for χ2 is one. The MINUIT error on a parameter is defined as the change of
parameter which would produce a change of the function value equal to up. This
is the most general way to define the error, although in statistics it is more usual
to define it in terms of the second derivative of the χ2 function — with respect to
the parameter in question. In the simplest linear case (when the function is exactly
parabolic at the minimum), the value up=1.0 corresponds to defining the error as
the inverse of the second derivative at the minimum. The fact that MINUIT defines
the error in terms of a function change does not mean that it always calculates such
a function change. Indeed it sometimes (HESSE) calculates the second derivative
matrix and inverts it, assuming a parabolic behaviour. This distinction is discussed
in section 1.2.

The purpose of defining errors by function changes is threefold:

• to preserve its meaning in the non–parabolic case (see section 1.2);

• to allow generality when the user–defined function is not a χ2 or likelihood,
but has some other origin;

1

• to allow calculation not only of “one–standard deviation” errors, but also two
or more standard deviations, or more general ’confidence regions’, especially in
the multiparameter case (see section 1.3).

1.1.1 χ2 normalization

If the user’s function value F is supposed to be a chisquare, it must of course be
properly normalized. That is, the “weights” must in fact correspond to the one–
standard–deviation errors on the observations. The most general expression for the
χ is of the form (see [1], p.163):

χ2 =
∑
i,j

(xi − yi(a))Vij(xj − yj(a))

where x is the vector of observations, y(a) is the vector of fitted values (or theoretical
expressions for them) containing the variable fit parameters a, and V is the inverse
of the error matrix of the observations x, also known as the covariance matrix of the
observations.

Fortunately, in most real cases the observations x are statistically independent of
each other (e.g., the contents of the bins of a histogram, or measurements of points
on a trajectory), so the matrix V is diagonal only. The expression for χ2 then
simplifies to the more familiar form:

χ2 =
∑

i

(xi − yi(a))2

e2

i

where e2

i is the inverse of the diagonal element of Vii, the square of the error on the
corresponding observation xi. In the case where the xi are integer numbers of events
in an unweighted histogram, for example, the e2

i are just equal to the xi (or to the
yi, see [1], pp.170–171).

The minimization of χ2 above is sometimes called weighted least squares in which
case the inverse quantities 1/e2

i are called the weights. Clearly this is simply a differ-
ent word for the same thing, but in practice the use of these words sometimes means
that the interpretation of e2

i as variances or squared errors is not straightforward.
The word weight often implies that only the relative weights are known (“point two
is twice as important as point one”) in which case there is apparently an unknown
overall normalization factor. Unfortunately the parameter errors coming out of such
a fit will be proportional to this factor, and the user must be aware of this in the
formulation of his problem.

The e2

i may also be functions of the fit parameters a (see [1], pp.170–171). Normally
this results in somewhat slower convergence of the fit since it usually increases the

2

nonlinearity of the fit. (In the simplest case it turns a linear problem into a non–
linear one.) However, the effect on the fitted parameter values and errors should be
small.

If the user’s χ2 function is correctly normalized, he should use up=1.0 (the default
value) to get the usual one standard–deviation errors for the parameters one by one.
To get two–standard–deviation errors, use up=4.0, etc., since the chisquare depen-
dance on parameters is quadratic. For more general confidence regions involving
more than one parameter, see section 1.2.

1.1.2 Likelihood normalization

If the user function is a negative log–likelihood function, it must again be correctly
normalized, but the reasons and ensuing problems in this case are quite different
from the chisquare case. The likelihood function takes the form (see [1], p. 155):

F = −

∑
i

ln f(xi, a)

where each x represents in general a vector of observations, the a are the free pa-
rameters of the fit, and the function f represents the hypothesis to be fitted. This
function f must be normalized:

∫
f(xi, a)dx1dx2 . . .dxn = constant

that is, the integral of f over all observation space x must be independent of the fit
parameters a.

The consequence of not normalizing f properly is usually that the fit simply will not
converge, some parameters running away to infinity. Strangely enough, the value
of the normalization constant does not affect the fitted parameter values or errors,
as can be seen by the fact that the logarithm makes a multiplicative constant into
an additive one, which simply shifts the whole log–likelihood curve and affects its
value, but not the fitted parameter values or errors. In fact, the actual value of the
likelihood at the minimum is quite meaningless (unlike the chi–square value) and even
depends on the units in which the observation space x is expressed. The meaningful
quantity is the difference in log–likelihood between two points in parameter–space,
which is dimensionless.

For likelihood fits, the value up=0.5 corresponds to one–standard–deviation errors.
Or, alternatively, F may be defined as −2 log(likelihood), in which case differences
in F have the same meaning as for χ2 and up=1.0 is appropriate. The two different

3

ways of introducing the factor of 2 are quite equivalent in MINUIT , and although
most people seem to use up=0.5, it is perhaps more logical to put the factor 2 directly
into FCN.

1.2 Non–linearities: MIGRAD versus HESSE versus MINOS

In the theory of statistics, one can show that in the asymptotic limit, any of several
methods of determining parameter errors are equivalent and will give the same result.
Let us for the moment call these methods MIGRAD, HESSE, and MINOS (SIMPLEX is
a special case). It turns out that the conditlons under which these methods yield
exactly the same errors are either of the following:

1. The model to be fitted (y or f) is exactly a linear function of the fit parameters
a, or

2. The amount of observed data is infinite.

It may happen that (1) is satisfied, in which case you don’t really need MINUIT , a
smaller, simpler, and faster program would do, since a linear problem can be solved
directly without iterations (see [1], p. 163–165), for example with CERN library
program LSQQR. Nevertheless, it may be convenient to use MINUIT since non–linear
terms can then be added later if desired, without major changes to the method.
Condition (2) is of course never satisfied, although in practice it often happens that
there is enough data to make the problem “almost linear”, that is there is so much
data that the range of parameters allowed by the data becomes very small, and any
physical function behaves linearly over a small enough region.

The following sections explain the differences between the various parameter errors
given by MINUIT .

1.2.1 Errors printed by MINUIT

The errors printed by MINUIT at any given stage represent the best symmetric er-
ror estimates available at that stage, which may not be very good. For example,
at the first entry to FCN, the user’s step sizes are given, and these may bear no
resemblance at all to proper parameter errors, although they are supposed to be
order–of–magnitude estimates. After crude minimizers like SIMPLEX, a revised error
estimate may be given, but this too is only meant to be an order–or–magnitude esti-
mate, and must certainly not be taken seriously as a physical result. Such numbers
are mainly for the internal use of MINUIT , which must after all assume a step size
for future minimizations and derivative calculations, and uses these “errors” as a
first guess to be modified on the basis of experience.

4

1.2.2 Errors after MIGRAD (or MINIMIZE)

The minimizing technique currently implemented in MIGRAD is a stable variation
(the “switching” method) of the Davidon–Fletcher–Powell variable–metric algorithm.
This algorithm converges to the correct error matrix as it converges to the function
minimum.

This algorithm requires at each step a “working approximation” of the error matrix,
and a rather good approximation to the gradient vector at the current best point.
The starting approximation to the error matrix may be obtained in different ways,
depending on the status of the error matrix before MIGRAD is called as well as the
value of STRATEGY (low, medium or high in MnStrategy. Usually it is found to be
advantageous to evaluate the error matrix rather carefully at the start point in order
to avoid premature convergence, but in principle even the unit matrix can be used as
a starting approximation. Usually the MINUIT default is to start by calculating the
full error matrix by calculating all the second derivatives and inverting the matrix.
If the user wants to make sure this is done, he can call HESSE before MIGRAD.

If a unit matrix is taken to start, then the first step will be in a steepest descent

direction, which is not bad, but the estimate of EDM, needed to judge convergence,
will be poor. At each successive step, the information gathered from the change
of gradient is used to improve the approximation to the error matrix, without the
need to calculate any second derivatives or invert any matrices. The algorithm used
for this updating is supposed to be the best known, but if there are a lot of highly
correlated parameters, it may take many steps before the off–diagonal elements of
the error matrix approach the correct values.

In practice, MIGRAD usually yields good estimates of the error matrix, but it is not
absolutely reliable for two reasons:

1. Convergence to the minimum may occur “too fast” for MIGRAD to have a good
estimate of the error matrix. In the most flagrant of such cases, MIGRAD realizes
this and automatically introduces an additional call to HESSE (described below),
informing the user that the covariance matrix is being recalculated. Since, for
n variable parameters, there are n(n + 1)/2 elements in the error matrix, the
number of FCN calls from MIGRAD must be large compared with n2 in order for
the MIGRAD error matrix calculation to be reliable.

2. MIGRAD gathers information about the error matrix as it proceeds, based on
function values calculated away from the minimum and assuming that the
error matrix is nearly constant as a function of the parameters, as it would be
if the problem were nearly linear. If the problem is highly non–linear, the error
matrix will depend strongly on the parameters, MIGRAD will converge more
slowly, and the resulting error matrix will at best represent some average over
the last part of the trajectory in parameter–space traversed by MIGRAD.

If MIGRAD errors are wrong because of (1), HESSE should be used after MIGRAD and

5

will give the correct errors. If MIGRAD errors are wrong because of (2), HESSE will
help, but only in an academic sense, since in this case the error matrix is not the
whole story and for proper error calculation MINOS must be used.

As a general rule, anyone seriously interested in the parameter errors should always
put at least a HESSE command after each MIGRAD (or MINIMIZE) command.

1.2.3 Errors after HESSE

HESSE simply calculates the full second–derivative matrix by finite differences and
inverts it. It therefore calculates the error matrix at the point where it happens to be
when it is called. If the error matrix is not positive–definite, diagnostics are printed,
and an attempt is made to form a positive–definite approximation. The error matrix
must be positive–definite at the solution (minimum) for any real physical problem.
It may well not be positive away from the minimum, but most algorithms including
the MIGRAD algorithm require a positive–definite “working matrix”.

The error matrix produced by HESSE is used to calculate what MINUIT prints as
the parameter errors, which therefore contain the effects due to parameter correla-
tions. The extent of the two–by–two correlations can be seen from the correlation
coefficients printed by MINUIT , and the global correlations (see [1], p. 23) are also
printed. All of these correlation coefficients must be less than one in absolute value.
If any of them are very close to one or minus one, this indicates an illposed problem
with more free parameters than can be determined by the model and the data.

1.2.4 Errors by MINOS

MINOS is designed to calculate the correct errors in all cases, especially when there are
non–linearities as described above. The theory behind the method is described in [1],
pp. 204–205 (where “non–parabolic likelihood” should of course read “non–parabolic
log–likelihood”, which is equivalent to “nonparabolic chi–square”).

MINOS actually follows the function out from the minimum to find where it crosses
the function value (minimum + up), instead of using the curvature at the minimum
and assuming a parabolic shape. This method not only yields errors which may
be different from those of HESSE, but in general also different positive and negative
errors (asymmetric error interval). Indeed the most frequent result for most physical
problems is that the (symmetric) HESSE error lies between the positive and negative
errors of MINOS. The difference between these three numbers is one measure of the
non–linearity of the problem (or rather of its formulation).

In practice, MINOS errors usually turn out to be close to, or somewhat larger than
errors derived from the error matrix, although in cases of very bad behaviour (very
little data or ill–posed model) anything can happen. In particular, it is often not true
in MINOS that two–standard–deviation errors (up=4) and three–standard–deviation

6

errors (up=9) are respectively two and three times as big as one–standard–deviation
errors, as is true by definition for errors derived from the error matrix (MIGRAD or
HESSE).

1.3 Multiparameter errors

In addition to the difficulties described above, a special class of problems arise in
interpreting errors when there is more than one free parameter. These problems are
quite separate from those described above and are really much simpler in principle,
although in practice confusion often arises.

1.3.1 The Error Matrix

The error matrix, also called the covariance matrix, is the inverse of the second
derivative matrix of the (log–likelihood or chisquare) function with respect to its
free parameters, usually assumed to be evaluated at the best parameter values (the
function minimum). The diagonal elements of the error matrix are the squares of
the individual parameter errors, including the effects of correlations with the
other parameters.

The inverse of the error matrix, the second derivative matrix, has as diagonal ele-
ments the second partial derivatives with respect to one parameter at a time. These
diagonal elements are not therefore coupled to any other parameters, but when the
matrix is inverted, the diagonal elements of the inverse contain contributions from
all the elements of the second derivative matrix, which is “where the correlations
come from”.

Although a parameter may be either positively or negatively correlated with another,
the effect of correlations is always to increase the errors on the other parameters in
the sense that if a given free parameter suddenly became exactly known (fixed), that
would always decrease (or at least not change) the errors on the other parameters. In
order to see this effect quantitatively, the following procedure can be used to “delete”
one parameter from the error matrix, including its effects on the other parameters:

1. Invert the error matrix, to yield the second–derivative matrix.

2. Remove the row and column of the inverse corresponding to the given param-
eter.

3. Re–invert the resulting (smaller) matrix.

This reduced error matrix will have its diagonal elements smaller or equal to the
corresponding elements in the original error matrix, the difference representing the
effect of knowing or not knowing the true value of the parameter that was removed

7

at step two. This procedure is exactly that performed by MINUIT when a parameter
is fixed. Note that it is not reversible, since information has been lost in the deletion.
Therefore the release of a fixed parameter causes the error matrix to be considered
lost and it must be recalculated entirely.

1.3.2 MINOS with several free Parameters

The MINOS algorithm is described in some detail in part 1 “MINUIT User’s Guide”
of this manual. Here we add some supplementary “geometrical interpretation” for
the multidimensional case.

Let us consider that there are just two free parameters, and draw the contour line
connecting all points where the function takes on the value Fmin + up. (MnContours
will do this for you from MINUIT). For a linear problem, this contour line would be
an exact ellipse, the shape and orientation of which are described in [1], p.196 (fig.
9.4). For our problem let the contour be as in figure 1.1. If MINOS is requested to
find the errors in parameter one (the x–axis), it will find the extreme contour points
A and B, whose x–coordinates, relative to the x–coordinate at the minimum (X),
will be respectively the negative and positive MINOS errors of parameter one.

1.3.3 Probability content of confidence regions

For an n–parameter problem MINOS performs minimizations in (n − 1) dimensions
in order to find the extreme points of the hypercontour of which a two–dimensional
example is given in figure 1.1, and in this way takes account of all the correlations
with the other n − 1 parameters. However, the errors which it calculates are still
only single–parameter errors, in the sense that each parameter error is a statement
only about the value of that parameter. This is represented geometrically by saying
that the confidence region expressed by the MINOS error in parameter one is the grey
area of figure 1.2, extending to infinity at both the top and bottom of the figure.

If up is set to the appropriate one–standard–deviation value, then the precise meaning
of the confidence region of figure 1.2 is:

“If the experiment is repeated many times with the same statistical analysis, then
the points A and B (which will in general be different for each realisation of the
experiment) will define an interval which contains the true value in 68.3% of the
experiments.”

(the probability of a normally–distributed parameter lying within one std.–dev. of
its mean). That is, the probability content of the grey area in figure 1.2 is 68.3%.
No statement is made about the simultaneous values of the other parameter(s), since
the grey area covers all values of the other parameter(s).

If it is desired to make simultaneously statements about the values of two or more
parameters, the situation becomes considerably more complicated and the proba-

8

Parameter 1

B

A

Figure 1.1: MINOS errors for parameter 1

bilities get much smaller. The first problem is that of choosing the shape of the
confidence region, since it is no longer simply an interval on an axis, but a hypervol-
ume. The easiest shape to express is the hyperrectangle given by:

A < param 1 < B

C < param 2 < D

E < param 3 < F , etc.

This confidence region for our two–parameter example is the grey area in figure 1.3.
However, there are two good reasons not to use such a shape:

• Some regions inside the hyperrectangle (namely the corners) have low likeli-
hoods, lower than some regions just outside the rectangle, so the hyperrectangle
is not the optimal shape (does not contain the most likely points).

• One does not know an easy way to calculate the probability content of these
hyperrectangles (see [1], p.196–197, especially fig. 9.5a).

9

Parameter 1

B

A

Figure 1.2: MINOS error confidence region for parameter 1

For these reasons one usually chooses regions delimited by contours of equal like-
lihood (hyperellipsoids in the linear case). For our two–parameter example, such
a confidence region would be the grey region in figure 1.4, and the corresponding
probability statement is: “The probability that parameter one and parameter two
simultaneously take on values within the one–standard–deviation likelihood contour
is 39.3%”.

The probability content of confidence regions like those shaded in figure 1.4 becomes
very small as the number of parameters NPAR increases, for a given value of up.
Such probability contents are in fact the probabilities of exceeding the value up for
a chisquare function of NPAR degrees of freedom, and can therefore be read off from
tables of chisquare. Table 1.3.3 gives the values of up which yield hypercontours
enclosing given probability contents for given number of parameters.

10

Parameter 1

B

A

C

Parameter 2

D

Figure 1.3: Rectangular confidence region for parameters 1 and 2

Confidence level (probability contents desired inside
Number of hypercontour of χ2 = χ2

min
+ up)

Parameters 50% 70% 90% 95% 99%
1 0.46 1.07 2.70 3.84 6.63
2 1.39 2.41 4.61 5.99 9.21
3 2.37 3.67 6.25 7.82 11.36
4 3.36 4.88 7.78 9.49 13.28
5 4.35 6.06 9.24 11.07 15.09
6 5.35 7.23 10.65 12.59 16.81
7 6.35 8.38 12.02 14.07 18.49
8 7.34 9.52 13.36 15.51 20.09
9 8.34 10.66 14.68 16.92 21.67

10 9.34 11.78 15.99 18.31 23.21
11 10.34 12.88 17.29 19.68 24.71

If FCN is − log(likelihood) instead of χ2, all values of up
should be divided by 2.

11

Parameter 1

B

A

Parameter 2

Figure 1.4: Optimal confidence region for parameters 1 and 2

12

References

[1] W. T. Eadie, D. Drijard, F. James, M. Roos, and B. Sadoulet. Statistical Methods

in Experimental Physics. North-Holland, 1971.

13

