

Memorandum

Datum: December 23, 2008

Von:	Andreas Suter	An:
Telefon:	$+41(0) 563104238$	
Raum:	WLGA / 119	cc:
e-mail:	andreas.suter@psi.ch	

The Skewed Gaussian

Sometimes one is encountering skewed lineshapes in $\mu \mathrm{SR}$ experiments. This is obviously true for vortex lattices of superconductors. If there is a full theory present to describe the particular $p(B)$ associated with μ SR lineshape that's fine and one should use the appropriate theory in that situation. However, there are sometimes situations where the lineshape is skewed and no theory is at hand, as for instance in the superlattice measurements I have performed. For this situation one would like to have a function with a minimal set of parameters which might fetch the situation. The Skewed Gaussian is such a minimal approach.
The skewed Gaussian is defined as

$$
p_{\mathrm{skg}}(B)=\sqrt{\frac{2}{\pi}} \frac{\gamma}{\left(\sigma_{+}+\sigma_{-}\right)} \begin{cases}\exp \left[-\frac{1}{2} \frac{\left(B-B_{0}\right)^{2}}{\left(\sigma_{+} / \gamma\right)^{2}}\right] & B \geq B_{0} \tag{1}\\ \exp \left[-\frac{1}{2} \frac{\left(B-B_{0}\right)^{2}}{\left(\sigma_{-} / \gamma\right)^{2}}\right] & B<B_{0}\end{cases}
$$

This function is normalized, i.e. $\int_{-\infty}^{\infty} p_{\text {skg }}(B) d B=1$. The nice thing about the skewed Gaussian is that all for our purpose relevant properties can be calculated, i.e. the moments, and the Fourier transform.
Here a list of the calculated moments:
mean value

$$
\begin{align*}
M_{-}^{(1)} & =\int_{-\infty}^{B_{0}} B p_{\text {skg }}(B) d B=\frac{\sigma_{-}}{\sigma_{+}+\sigma_{-}}\left(B_{0}-\sqrt{\frac{2}{\pi}} \sigma_{-} / \gamma\right) \tag{2}\\
M_{+}^{(1)} & =\int_{B_{0}}^{\infty} B p_{\text {skg }}(B) d B=\frac{\sigma_{+}}{\sigma_{+}+\sigma_{-}}\left(B_{0}+\sqrt{\frac{2}{\pi}} \sigma_{+} / \gamma\right) \tag{3}
\end{align*}
$$

and therefore

$$
\begin{equation*}
\langle B\rangle=M_{1}=M_{-}^{(1)}+M_{+}^{(1)}=B_{0}+\sqrt{\frac{2}{\pi}}\left(\sigma_{+}-\sigma_{-}\right) / \gamma \tag{4}
\end{equation*}
$$

second moment - variance

$$
\begin{align*}
M_{-}^{(2)} & =\int_{-\infty}^{B_{0}}(B-\langle B\rangle)^{2} p_{\mathrm{skg}}(B) d B=\frac{\sigma_{-}\left(2 \sigma_{+}^{2}+(\pi-2) \sigma_{-}^{2}\right)}{\pi \gamma^{2}\left(\sigma_{-}+\sigma_{+}\right)} \tag{5}\\
M_{+}^{(2)} & =\int_{B_{0}}^{\infty}(B-\langle B\rangle)^{2} p_{\mathrm{skg}}(B) d B=\frac{\sigma_{+}\left(2 \sigma_{-}^{2}+(\pi-2) \sigma_{+}^{2}\right)}{\pi \gamma^{2}\left(\sigma_{-}+\sigma_{+}\right)} \tag{6}
\end{align*}
$$

and therefore

$$
\begin{equation*}
M_{2}=M_{-}^{(2)}+M_{+}^{(2)}=\frac{1}{\pi} \frac{1}{\gamma^{2}}\left[(\pi-2) \sigma_{-}^{2}-(\pi-4) \sigma_{-} \sigma_{+}+(\pi-2) \sigma_{+}^{2}\right] \tag{7}
\end{equation*}
$$

higher moments

$$
\begin{align*}
M_{-}^{(n)} & =\int_{-\infty}^{B_{0}}(B-\langle B\rangle)^{n} p_{\mathrm{skg}}(B) d B \tag{8}\\
M_{+}^{(n)} & =\int_{B_{0}}^{\infty}(B-\langle B\rangle)^{n} p_{\mathrm{skg}}(B) d B \tag{9}
\end{align*}
$$

with

$$
\begin{equation*}
M_{n}=M_{-}^{(n)}+M_{+}^{(n)} \tag{10}
\end{equation*}
$$

skewness

If we, instead of using σ_{-}and σ_{+}, define new variables

$$
\begin{align*}
\sigma & :=\sigma_{+} \tag{11}\\
\zeta & :=\sigma_{-} / \sigma_{+} \tag{12}
\end{align*}
$$

The previous moments can be written as

$$
\begin{align*}
\langle B\rangle= & B_{0}-\frac{\sigma}{\gamma} \sqrt{\frac{2}{\pi}}(\zeta-1) \tag{13}\\
M_{2}= & \left(\frac{\sigma}{\gamma}\right)^{2} \frac{1}{\pi}\left[\pi\left(1-\zeta+\zeta^{2}\right)-2(\zeta-1)^{2}\right] \tag{14}\\
M_{3}= & \left(\frac{\sigma}{\gamma}\right)^{3} \sqrt{\frac{2}{\pi^{3}}}(\zeta-1)\left[\pi\left(1-3 \zeta+\zeta^{2}\right)-4(\zeta-1)^{2}\right] \tag{15}\\
M_{4}= & \left(\frac{\sigma}{\gamma}\right)^{4} \frac{1}{\pi^{2}}\left[3 \pi^{2}\left(1-\zeta+\zeta^{2}-\zeta^{3}+\zeta^{4}\right)-4 \pi(\zeta-1)^{2}\left(1+3 \zeta+\zeta^{2}\right)-12(\zeta-1)^{4}\right] \tag{16}\\
M_{5}= & \left(\frac{\sigma}{\gamma}\right)^{5} \sqrt{\frac{2}{\pi^{5}}}(\zeta-1)\left[\pi^{2}\left(7-15 \zeta+7 \zeta^{2}-15 \zeta^{3}+7 \zeta^{4}\right)\right. \tag{17}\\
& \left.-20 \pi(\zeta-1)^{2}\left(1+\zeta+\zeta^{2}\right)-16(\zeta-1)^{4}\right] \tag{18}
\end{align*}
$$

for $\zeta=1$, it is immediately clear from the above table that all odd moments vanish (as they should), and that $\langle B\rangle=B_{0}, M_{2}=(\sigma / \gamma)^{2}$, and $M_{4}=3(\sigma / \gamma)^{4}$.
Typically not ζ, as defined here, is used as the skewness but

$$
\begin{equation*}
\alpha:=\frac{M_{3}^{1 / 3}}{M_{2}^{1 / 2}} \tag{19}
\end{equation*}
$$

see Fig. 1

The Fourier Transform of the Skewed Gaussian

The polarization $P(t)$ is the cosine Fourier transform of $p_{\text {skg }}(B)$, namely

$$
\begin{equation*}
P(t)=\int_{0}^{\infty} p_{\mathrm{skg}}(B) \cos (\gamma B t) d B \tag{20}
\end{equation*}
$$

however, what will be given below is the following Fourier transform

Figure 1: Skewness α versus ζ.

$$
\begin{equation*}
P(t)=\int_{-\infty}^{B_{0}} p_{\mathrm{skg}}(B) \cos (\gamma B t) d B+\int_{B_{0}}^{\infty} p_{\mathrm{skg}}(B) \cos (\gamma B t) d B \tag{21}
\end{equation*}
$$

which means that B_{0} has to be sufficiently high so that $p_{\text {skg }}(B=0) \approx 0$.
The polarization is given by the following expression

$$
\begin{align*}
P(t)= & \frac{\sigma_{-}}{\sigma_{-}+\sigma_{+}} \exp \left[-\frac{1}{2}\left(\sigma_{-} t\right)^{2}\right]\left\{\cos \left(\gamma B_{0} t\right)+\sin \left(\gamma B_{0} t\right) \operatorname{Erfi}\left(\frac{\sigma_{-} t}{\sqrt{2}}\right)\right\}+ \\
& \frac{\sigma_{+}}{\sigma_{-}+\sigma_{+}} \exp \left[-\frac{1}{2}\left(\sigma_{+} t\right)^{2}\right]\left\{\cos \left(\gamma B_{0} t\right)-\sin \left(\gamma B_{0} t\right) \operatorname{Erfi}\left(\frac{\sigma_{+} t}{\sqrt{2}}\right)\right\} \tag{22}
\end{align*}
$$

where $\operatorname{Erfi}(x)$ is the imaginary error function (see also http://functions.wolfram.com/GammaBetaErf/Erfi/) with the following properties

$$
\begin{equation*}
\operatorname{Erfi}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{t^{2}} d x=\frac{2}{\sqrt{\pi}} \sum_{k=0}^{\infty} \frac{x^{2 k+1}}{k!(2 k+1)}=\frac{2 x}{\sqrt{\pi}}{ }_{1} \mathrm{~F}_{1}\left(\frac{1}{2} ; \frac{3}{2} ; x^{2}\right) \tag{23}
\end{equation*}
$$

where ${ }_{1} \mathrm{~F}_{1}(m ; n ; x)$ is the so called Kummer confluent hypergeometric function. This function is mentioned here because it is implemented in most numerical packages as for instance in the GSL (see http://www.gnu.org/software/gsl/).

How does this look like compared to an ordinary Gaussian? Fig. 2 shows such a comparison. The Gaussian, i.e. $P(t)=\exp \left[-1 / 2(\sigma t)^{2}\right] \cos (\gamma \hat{B} t)$, where $\hat{B}=\langle B\rangle$ [see Eq.(13)] in order that the two functions have about the same frequency. The most obvious difference is the longer decay time of a skewed Gaussian.

Implementation and Tests

At the moment the skewed Gaussian is only implemented in my forthcoming WKM replacement. The plan is to implement it in WKM before end of the shutdown 2008.

In order to check the robustness of this function I have performed some testing. I have generated a set of fake data. For this I generated $p(B)$'s and than calculated $N_{i}(t)(\mu \mathrm{SR}$ spectra) with and without TF background. $N_{i}(t)$ were generated including Poisson noise and a flat static background. A typical statistics of $\approx 1.2 \cdot 10^{6}$ per histogram was used. To be more precise

Figure 2: Skewed Gaussian $P(t)$ (blue), and Gaussian TF (red), for the following parameters: (i) skewed Gaussian (blue): $\gamma B_{0}=10, \sigma_{+}=1, \sigma_{-} / \sigma_{+}=0.6$; (ii) Gaussian (red): $\gamma B_{0}=\langle B\rangle=$ 10.3192 [see Eq.(13)], $\sigma=\sqrt{M_{2}}=0.811259$. The horizontal axis is plotted in units $1 / \gamma$.

$$
\begin{align*}
N_{i}(t)= & N_{0}^{(i)} e^{-t / \tau}\left\{1+A\left\langle w G_{\text {skg }}\left(B_{0}, \sigma_{-}, \sigma_{+}, \phi_{i}, t\right)\right.\right. \\
& \left.\left.+(1-w) \exp \left[-1 / 2\left(\sigma_{\text {ext }} t\right)^{2}\right] \cos \left(\gamma B_{\text {ext }} t+\phi_{i}\right)\right\rangle\right\}+ \text { Bkg. } \tag{24}
\end{align*}
$$

where $G_{\text {skg }}\left(B_{0}, \sigma_{-}, \sigma_{+}, \phi_{i}, t\right)=P(t)$ of Eq.(22).
The following data sets where generated and tested (each with 4 histograms and the phases $\left.\phi_{\mathrm{L}}=0, \phi_{\mathrm{T}}=90, \phi_{\mathrm{R}}=180, \phi_{\mathrm{B}}=270\right)$:

no	A	B_{0} (G)	σ_{-} (G)	σ_{+} (G)	w	$B_{\text {ext }}$ (G)	$\sigma_{\text {ext }}$ (G)
1	0.26	100.0	8.0	10.0	1.0	-	-
2	0.26	100.0	10.0	8.0	1.0	-	-
3	0.26	100.0	9.0	9.0	1.0	-	-
4	0.26	100.0	6.0	10.0	1.0	-	-
5	0.26	100.0	10.0	6.0	1.0	-	-
6	0.26	100.0	4.0	5.0	1.0	-	-
7	0.26	100.0	5.5	4.5	1.0	-	-
8	0.26	100.0	5.0	4.0	1.0	-	-
9	0.26	100.0	8.0	10.0	0.9	110.0	1.2
10	0.26	100.0	10.0	8.0	0.9	110.0	1.2
11	0.26	100.0	9.0	9.0	0.9	110.0	1.2
12	0.26	100.0	6.0	10.0	0.9	110.0	1.2
13	0.26	100.0	10.0	6.0	0.9	110.0	1.2
14	0.26	100.0	4.0	5.0	0.9	110.0	1.2
15	0.26	100.0	5.5	4.5	0.9	110.0	1.2
16	0.26	100.0	5.0	4.0	0.9	110.0	1.2

Table 1: Simulated data sets. First column is the label for the data set, the following parameters are defined via Eq.(24).

The following figures show the fit results. The corresponding χ^{2} 's are found in Tabs. 2 .

no	σ_{-} / σ_{+} $(\mathrm{G}) /(\mathrm{G})$	$\chi_{\mathrm{skg}}^{2} / \mathrm{NDF}$	$\chi_{\mathrm{sg}}^{2} / \mathrm{NDF}$
1	$8 / 10$	$1970.6 / 2042$	$1993.3 / 2043$
2	$10 / 8$	$2002.2 / 2042$	$2034.9 / 2043$
3	$9 / 9$	$1964.9 / 2042$	$1965.2 / 2043$
4	$6 / 10$	$1997.3 / 2042$	$2121.3 / 2043$
5	$10 / 6$	$2000.1 / 2042$	$2143.2 / 2043$
6	$4 / 5$	$1984.8 / 2042$	$1998.7 / 2043$
7	$4.5 / 4.5$	$2017.9 / 2042$	$2018.0 / 2043$
8	$5 / 4$	$2031.9 / 2042$	$2052.8 / 2043$

Table 2: χ^{2} 's of the fits for skewed Gaussian $\left(\chi_{\mathrm{skg}}^{2}\right)$ and purly Gaussian $\left(\chi_{\mathrm{sg}}^{2}\right)$ without TF background. Data set according to Tab.1.

no	σ_{-} / σ_{+} $(\mathrm{G}) /(\mathrm{G})$	$\chi_{\mathrm{skg}}^{2} / \mathrm{NDF}$	$\chi_{\mathrm{sg}}^{2} / \mathrm{NDF}$
9	$8 / 10$	$2047.1 / 2040$	$2059.2 / 2041$
10	$10 / 8$	$1986.1 / 2040$	$2010.8 / 2041$
11	$9 / 9$	$2032.7 / 2040$	$2033.1 / 2041$
12	$6 / 10$	$1992.2 / 2040$	$2063.4 / 2041$
13	$10 / 6$	$2104.1 / 2040$	$2167.1 / 2041$
14	$4 / 5$	$1971.2 / 2040$	$1973.0 / 2041$
15	$4.5 / 4.5$	$2010.7 / 2040$	$2010.8 / 2041$
16	$5 / 4$	$2073.0 / 2040$	$2373.1 / 2041$

Table 3: χ^{2} 's of the fits for skewed Gaussian $\left(\chi_{\mathrm{skg}}^{2}\right)$ and purly Gaussian $\left(\chi_{\mathrm{sg}}^{2}\right)$ with TF background. Data set according to Tab.1.

Figure 3: Example $p(B)$ no 12 of Tab.1.

Figure 4: Example $A(t)$ no 12 of Tab.1, $\phi_{0}=0.0$.

Figure 5: Fit results for the field B_{0} of the fake data test without TF background. The fit run no $1 \ldots 8$ correspond to a skewed Gaussian fit of the data set no $1 \ldots 8$ of Tab.1. The fit run no $9 \ldots 16$ are the results of a purly Gaussian fit to the same data set.

Figure 6: Fit results for σ_{-} / σ_{+}of the fake data test without TF background. The fit run no $1 \ldots 8$ correspond to a skewed Gaussian fit of the data set no $1 \ldots 8$ of Tab.1. The fit run no $9 \ldots 16$ are the results of a purly Gaussian fit to the same data set. The open symbols are the fit results, whereas the full symbols show the theoretical values.

Figure 7: Fit results for the field B_{0} of the fake data test with TF background. The fit run no $1 \ldots 8$ correspond to a skewed Gaussian fit of the data set no $9 \ldots 16$ of Tab.1. The fit run no $9 \ldots 16$ are the results of a purly Gaussian (including the TF background) fit to the same data set.

Figure 8: Fit results for σ_{-} / σ_{+}of the fake data test with TF background. The fit run no $1 \ldots 8$ correspond to a skewed Gaussian fit of the data set no $9 \ldots 16$ of Tab.1. The fit run no $9 \ldots 16$ are the results of a purly Gaussian fit (including the TF background) to the same data set. The open symbols are the fit results, whereas the full symbols show the theoretical values.

Some Conclusions and Warnings

1. WARNING: if σ is rather small $\sigma \lesssim 0.15\left(\mu \mathrm{~s}^{-1}\right)$, minuit tends to have problems to converge. In all cases where minuit does not converge nicely, use another fit function!
2. The skewed Gaussian is a robust fit function, i.e. if converging, the fit is always finding the correct parameter values for all the tests performed so far.
3. If one wants to find the peak field $B_{\text {peak }}$ of a Meissner profile measurement, the skewed Gaussian should be the better fit curve than a pure Gaussian.

Missing Tests

- Comparison between skewed Gaussian and mutiple Gaussian fits.

