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1 Overview

In the following sections I am going to describe the analysis performed on thin niobium– and
lead–films. This films were measured during the run XIII - 2001 and run XIV - 2002. The
motivation for these experiments is the search for nonlocal effects (see Sec.6).

The discussion will be organized as follows: (i) In Secs.2–5 different methods to analyze
the data will be presented1. They are rather general and hence not only valid for the case of
superconductors. (ii) Sec.6 will give a brief overview about the theory needed for the quanti-
tative analysis of the data. (iii) In Secs.7, 8 a detailed analysis will be presented. (iv) In order
to crosscheck the results the same analysis methods were applied to YBa2Cu3O7−δ which is a
strong type II superconductor, i.e. λL(0) À ξ(0), in which nonlocal effects should not play any
significant rôle2.

2 Mean Value Reconstruction

During the beam time we used the following scheme to analyze the data online:

• The reduced asymmetry a(t) was fitted with a(t) = a0 exp[−(σt)2/2] cos(ωt + φ). The
mean field value was taken, i.e. 〈B〉 ∝ ω.

• From trim.sp the mean stopping distance 〈z〉 for a given energy was taken.

• B(z) was approximated by 〈B〉 vs. 〈z〉.

The question is if this scheme is any good. A very crude mathematical treatment shows that a
footing along this line might be not too bad, though it doesn’t describe exactly the procedure
described above. The difference between the mathematical treatment and the online analysis is
that in the model the “real” 〈B〉 is calculated, whereas in the online analysis a Gaussian 〈B〉G
is estimated. Two models can be calculated readily. Both relay on the fundamental equation
linking real space (z) with field space (B),

p(B)dB = n(z)dz, (1)

where p(B) gives the probability to find a muon in in the interval [B, B + dB], likewise n(z)
gives the probability to find a muon in in the interval [z, z +dz]. Both probability distributions
need to be normalized.
First exponential B vs. z dependence is treated and afterwards a heavily damped oscillation3:

(i) Exponential B(z): One has to find an approximate stopping distribution for the muons.
A simple formula which mimics the essential features is

n(z) = n0 (z0 − z) z4, z ∈ [0, z0], (2)

where n0 = 30 z−6
0 is the normalization factor and z0 the maximum distance which an implanted

muon can reach (see also Fig.1).

1Yet another approach is given in Ref.[1]
2at least not in the observed temperature range. There are some speculations that in a d-wave superconductor

there might be as well nonlocal effects at very low temperature T . 1K
3which is the result of the “extrem anomalous limit” of the BCS and Pippard theory (see Sec.6)
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Non local effects in superconductors 3

Figure 1: Toy stopping distribution of the muons.

The mean value of z is

〈z〉 =
5
7

z0.

Assuming further

B(z) = Bext exp(−z/λ) (3)

one gets

〈B〉 =
∫ z0

0

dz B(z)n(z)

= B0 n0λ
2
[
24λ3(z0 − 5λ) + e−z0/λ

{
z4
0 + 8λz3

0 + 36λ2z2
0 + 96λ3z0 + 120λ4

}]

= B0 exp(−〈z〉/λ) + f(〈z〉), f(〈z〉) > 0

with lim
〈z〉→0

f(〈z〉) = 0 and f(〈z〉) < 〈B〉(〈z〉) in the first two decades which is shown in Fig.2.

Notice that the curvature of f(〈z〉) is positive.

Figure 2: Functional dependence of 〈B〉 vs. 〈z〉 and Bp(zp) (see next section).
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4 Non local effects in superconductors

(ii) “Extreme Anomalous Limit” B(z): The origin of this name will be clarified in Sec.6.
The spatial dependence of the field is given as

B(z) ' B0 exp

(
−
√

3
2

Qz

)
cos

(
1
2

Qz

)
(4)

Since the result for 〈z〉 is already given, only 〈B〉 has to be calculated which is

〈B〉/B0 = c0 + c1 exp

(
−7
√

3
10

Q〈z〉
)

cos
(

7
10

Q〈z〉
)

+ c2 exp

(
−7
√

3
10

Q〈z〉
)

sin
(

7
10

Q〈z〉
)

with the ci’s

c0 = −1125000 (7
√

3 Q〈z〉 − 50)
117649 (Q〈z〉)6

c1 = −375
[
150000 + 84000

√
3 Q〈z〉+ 44100 (Q〈z〉)2 − 2401 (Q〈z〉)4]

117649 (Q〈z〉)6

c2 = −375
[
12000 + 6300

√
3 Q〈z〉+ 3920 (Q〈z〉)2 + 343

√
3(Q〈z〉)3]

16807 (Q〈z〉)5 .

This formulaë look rather ugly but as can be seen in Fig.3, the result is very similar to the
easier case discussed before.

Figure 3: Functional dependence of 〈B〉 vs. 〈z〉 for the “extreme anomalous limit”.

3 Peak Value Reconstruction

Analogous to the previous section one can study the functional dependence of Bp vs. zp, where
the subscript refer to the peak position of the corresponding distribution. Taking the same
stopping distribution n(z) (see Eq.(2)) one arrives at the following results.

(i) Exponential B(z) (Eq.3): The z peak position is

zp =
4
5

z0.

To get the Bp one has to work a little harder. Eq.(1) gives the route, according to which

p(B) = n(z)
∣∣∣∣
dB

dz

∣∣∣∣
−1

=
λ

B
(λ ln(B0/B))4 (z0 − λ ln(B0/B)) , B ∈ [B0e

−z0/λ, B0]
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Non local effects in superconductors 5

Since we are only interested at the peak position, the normalization factor was suppressed. This
is the formula which one allows to get Bp which is

Bp = B0 exp
[−1

2λ

(
z0 − 5λ +

√
(z0 + 5λ)2 − 4z0

)]

= B0 exp(−zp/λ)− g(zp), g(zp) > 0, lim
zp→0

g(zp) = 0

This result is similar to the one in the last section, except that the curvature of g(zp) is negative.

(ii) “Extreme Anomalous Limit” B(z): The peak position can not be calculated analyt-
ically.

4 Peak Value Reconstruction assuming Gaussian p(B)

The last case which can be calculated analytically and is perhaps closest to the online-analysis
is that we assume a Gaussian field distribution

p(B) =
1√

2πδB
exp

[
−1

2

(
B −B0

δB

)2
]

. (5)

According to Eq.(1), n(z) can be calculated if an exponential B(z) (Eq.(3)) is assumed, it takes
the form

n(z) =
1√
2πλ

B0

δB
exp

[
−1

2

(
Bexte

−z/λ −B0

δB

)2

− z

λ

]
(6)

The peak values are than given by

Bp = B0

np = λ ln
[

Bext

2δB2

(√
B2

0 + 4δB −B0

)]
,

which leads to

Bp(zp) = Bext e−z/λ

[
1−

(
δB

Bext

)2

e+2zp/λ

]
. (7)

This results are collected in Fig.4. As one can see, it shows the same trend as the peak value
reconstruction described in Sec.3. The n(z) profile seems the be a little less realistic compared
to the one used above.

5 Integral Reconstruction

In case the statistics of the data is not too bad it is possible to reconstructed the B vs. z relation
directly from Eq.(1). Integrating both sides of Eq.(1) leads to

∫ z

0

n(ζ) dζ = 1−
∫ ∞

z

n(ζ) dζ =
∫ ∞

B

p(β) dβ = 1−
∫ B

0

p(β) dβ,

which is, for a given z, an equation for B. However, this is only true if p(B), n(z) are monotonic
functions. Figure 5 visualizes this very idea.
Mathematically starting the z-Integration at z = 0 (red shaded area in Fig. 5) is equivalent as
to start the z-Integration deep inside the sample (blue shaded area in Fig. 5). However, with
real experimental data this is not always true. There are two main reasons:
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6 Non local effects in superconductors

Figure 4: Bp vs. zp reconstruction for a Gaussian p(B) and an exponential B(z).

1. A background at the external field Bext is very often present in the real data. A correction
by hand of this background may lead to a slightly wrong p(B).

2. MaxEnt has a hard time to cope with small B-fields4. The reason is the exponential decay
of the Muon (life time), leading to a final line width of the signal which first has to be
taken care off. From this point of view, it is better starting the z-integration at the very
surface of the sample.

In practise one has to decide for every single run what makes more sense, however, very often
the second point proofed to be the more sever handicap. Furthermore one finds very often some
artefacts at the very beginning of B(z) and the very tail in the reconstruction. Some are very
well understood and are going to be described in the following. (i) Kink upturn for z → 0:
This is due to the uncertainty in the external background. The feature (if there) is always
very pronounced and hence it is very clear where to cut. (ii) Downturn for z → zmax, where
zmax is the maximal implantation distance for the muon: I am not quite sure yet. I think the
reason is that n(z)trim.sp for z → zmax does not show a perfect correspondence with the real
n(z) anymore. Another effect enters through the difference in the binning of the data. This
also can lead to a downturn as on finds from crosschecks with artificial data. This feature is
always there and it less clear where to cut. I always cut off rather more to be on the save side.

6 Theory

One is used to think in the London approximation in which “perfect diamagnetism” leads to
the very simple relation between the current density jD and the vector potential A [2, 3, 4]

jD = − 1
µ0

µ0
ne2

m︸ ︷︷ ︸
=: λ−2

L

A (8)

with µ0 the magnetic permeability of free space, e the electronic charge, m the electronic mass,
and n is the superfluid density5. This results, for a semiinfinite surface, in an exponential
decaying magnetic field

h(z) = hext exp(−z/λL)

Since the Meissner–Ochsenfeld effect is not only “perfect diamagnetism” this picture is
somewhat too crude. A very simple picture might also help to realize that something is missing.

4small means smaller than the life time of the muon, or more precise B / 1/(γτ) = 5.34 G
5In a phenomenological twofluid model, e is the electrical charge of the charge carriers, i.e. 2e for a Cooper

pair, and m the mass of these charge carriers, i.e. 2m for a Cooper pair.
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Non local effects in superconductors 7
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Figure 5: Sketch of the relation between n(z), B(z), p(B). The colored areas show the recon-
struction pathes.

Fig.6 shows two situations: (i) λ À ξ here the magnetic field is approximately constant over the
characteristic length ξ of the superfluid charge carriers which are responsible for the Meissner–
Ochsenfeld screening. In this situation the local description is sufficient. (ii) λ ¿ ξ in this
situation there is a drastic change of the magnetic field over the distance ξ and hence the local
description must break down. The real Meissner–Ochsenfeld screening current consists of two
parts, a diamagnetic one as above and a paramagnetic one. In the real superconductor Eq.(8)
goes over into6

jα(r) = −
∑

β

∫
Kαβ(r − r′)Aβ(r′)dr′ (9)

which after Fourier transformation in respect to r is

jα(q) = −
∑

β

Kαβ(q)Aβ(q). (10)

The magnetic field penetrating a semiinfinite surface of a superconductor in the Meissner–
Ochsenfeld state is then given as (assuming Kαβ to be isotropic)

h(z) = h0 Im
{
Fq

[
q

q2 + K(q, T )

]}
(11)

where Fq [. . .] means Fourier transform in respect to q. This reduces obviously to an exponential
decay if K(q, T ) is a constant. Strictly speaking, Eq.(11) is only valid in the case of specular
reflection at the surface. There is another analytical formula available if one assumes only
diffuse scattering at the surface. A quantitative analysis shows [4] that the difference is only
marginal and since the real system wont by in neither off these two limits, I will stick to Eq.(11).

6only linear response is considered! Further a translational invariant system is assumed.
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8 Non local effects in superconductors
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Figure 6: The left panel shows a typical type II situation. Here the change of the magnetic field
over the size of a Cooper pair ξ is negligible and hence a local j-A is sufficient. The right panel
shows the situation of a type I superconductor. Here the magnetic field changes dramatically
over the distance of ξ and hence the local approximation must break down.

6.1 Pippard

Pippard [5] was the first to realize that under some circumstances the London approximation
breaks down, nota bene before the BCS theory was borne. He found experimentally as well as
theoretically that an additional intrinsic length scale has to exist, which is the coherence length
ξP. He found a kernel which is actually very close to the BCS one

µ0KP(q, T ) =
1

λ2
L(T )

ξP(T )
ξP(0)

[
3
2

1
(qξP(T ))3

{(
1 + (qξP(T ))2

)
arctan(qξP(T ))− qξP(T )

}]
. (12)

The q–dependence of the kernel is shown in Fig.7. The real-space j–A relation in the Pippard
approximation is then given by

j(r) = − 1
µ0

3
4π

1
λ2

L(T ) ξP(T )

∫
R[R ·A(r′)] e−R/ξP(T )

R4
dr′, (13)

with R = r − r′.
The weak temperature dependence of ξP(T ) was only explained by the BCS theory. This can
be written as

1
ξP(T )

=
J(0, T )
ξP(0)

+
1
`

(14)

where ` is the electronic mean free path and

J(0, T ) =
(

λ(T )
λ(0)

)2 ∆(T )
∆(0)

tanh
[
∆(T )
2kBT

]

The temperature dependence of ξP(T ) for ` →∞ is shown in Fig.8.

6.2 BCS

The BCS treatment leads to a very similar equation as Eq.(13) where only the exponential
function has to be replaced by a more complicated one. Without giving here any details (see
[2, 6]) this leads to the kernel

µ0KBCS(q, T ) =
∞∑

n=0

1
Λn(T, `)

· g(qξn(T, `)) (15)

with the following set of abbreviations
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Non local effects in superconductors 9

Figure 7: q–dependence of the different kernels. The blue dashed line represents the London
approximation. Since it is a constant in q, obviously a delta function results in z, i.e. a local
relation. The BCS- (black) and Pippard-kernel (magenta) are very similar and have a q−1

asymptotic behavior for q →∞.

Λn(T, `) =
1
2a

λ2
Lf3

n

(
1 +

ξn(T, `)
`

)

g(x) =
3
2

1
x3

{(
1 + x2

)
arctan(x)− x

}
, lim

x→0
g(x) = 1

ξn(T,∞) =
π

2
ξ0

fn

∆(0)
∆(T )

,
1

ξn(T, `)
=

1
ξn(T,∞)

+
1
`

a = π
kBT

∆(T )
= γ

t

δ(t)
= 1.7811

t

δ(t)
, t =

T

Tc
, δ(t) =

∆(T )
∆(0)

fn =
√

1 + (2n + 1)2a2

ξ0 =
~vF

π∆(0)
, ∆(0) =

π

γ
kBTc = 1.764 kBTc

with γ = 1.7811 . . . the Euler constant. Though this expressions looks much more complicated
compared to the Pippard relation, there are only slight deviation as long as T . 0.9Tc.
The temperature dependence of λL(T ), within the BCS theory, is defined by the following
equation (` →∞)

µ0KBCS(q = 0, T, ` →∞) =
1

λ2
L(T )

=
∞∑

n=0

1
Λn(T,∞)

=
1

λ2
L(0)

∞∑
n=0

2a

(1 + (2n + 1)2a2)3/2
(16)

6.3 h(z) for a semiinfinite sample surface

After have written down all these formulaë the question is: How does the field dependence alter
by all this? As shown at the beginning of this section the field decays exponentially in the
local limit. Within the BCS and Pippard theory there is no analytical formula available and
the h(z) dependence has to be calculated numerically according to Eq.(11). There is one other
interesting limit which can be treated analytical which is the extreme anomalous limit. In this
limit the real kernel is replaced by its q →∞ asymptotic behavior which is
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10 Non local effects in superconductors

Figure 8: Temperature dependence of the “modified” Pippard coherence length ξP(T ).

µ0Kea(q) =
3π

4
1

λ2
Lξ0

q−1

Carrying out the Fourier transform in Eq.(11) leads to7

h(z) ' hext exp

(
−
√

3
2

Qz

)
cos

(
1
2

Qz

)
, Q =

[
3π

4
1

λ2
Lξ0

]1/3

(17)

Fig.9 shows for two cases (Aluminum, Lead), how the different h(z)’s depend upon the models.
The main effect off the non–locality of the kernels are two folded: (i) There is a sign reversal
of the field at z/λL ' 5. The maximum amplitude of the reversed field is around two orders
of magnitude smaller than the external field, making it rather hard to detect in our µSR
experiments. (ii) h(z) shows a clear negative curvature. This is a much more reliable feature
than sign reversal of the field.

6.4 Strong coupling limit

Now, there is a problem with Niobium and Lead. Both are not very well described in the simple
BCS model which assumes only a weak coupling between the electron and the phonons. Further
no spin-orbit coupling is present in the weak coupling BCS model. The first point is neither for
Niobium nor for Lead fulfilled. In the case of Lead also the second point is important.

Fortunately the general structure of the of the kernel K(q, ω → 0) is the same as in Eq.(15)
[7, 8, 9]. The only changes are a different gap ∆sc(T ) and an additional renormalization factor
Z. These leads to a renormalization of (see also Sec.6.2 and Sec.A)

Λn(∆BCS) → Λn(∆sc)Z
ξn(∆BCS) → ξn(∆sc)/Z

since the gap is only mildly affected (e.g. 2∆BCS(0)/kBTc = 3.52 whereas 2∆Pb
sc (0)/kBTc = 4.3

[8], though the temperature dependence of ∆(T ) is altered as well), the dominant part stems

7The exact solution would be h(z)/hext = 1/(2
√

3π) · 1/(2πi)
R

ds{α−sΓ(1/2 − s)Γ(s)Γ(1/6 + s)Γ2(1/2 +
s)Γ(5/6 + s)/(Γ(2/3 − s)Γ(1/3 − s))}, with α = π2z6/(21034 λ4

Lξ2
0). This is a horrible thing and only slightly

different than the given expression.
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Non local effects in superconductors 11

Figure 9: The top two figures show Aluminum, whereas the bottom two show Lead. As one
can see, the differences between Pippard and BCS are small.

from the renormalization due to Z (ZPb ≈ 2.5). This change does not changing the form of the
kernel, rather it is altering its amplitude, hence all the features describing h(z) are still present
albeit the field reversal is weekend even more.

6.5 Zoology of λ and ξ

Here a warning: λ is not λ! No, seriously, there are quite a few different definitions of λ and
ξ as will be shown below. The first water shed is between the microscopic definitions of λ and
ξ and the Ginzburg–Landau (GL) ones. Whereas in GL approach 1/ξ describes something like
the stiffness of the order parameter with a very strong temperature dependence as approaching
Tc, the ξ in BCS theory is rather something like the diameter of a Cooper-Pair and hence only
very weakly temperature dependant.

For λ it is even worse. There are several different definitions within the microscopic ap-
proach, which I will try to list below. Lets start with the local theory where there actual all
the different definition gives the same result.

Definition 1: Since h(z) = hext exp(−z/λ) the field dependence itself defines a natural length
scale λ.

Definition 2:

λint :=
1

hext

∫ ∞

0

dz h(z) (18)

which results, of course, in the same λ if h(z) ∝ exp(−z/λ).

Definition 3: Yet another definition is given by Eq.(16), i.e.

µ0KBCS(q = 0, T, ` →∞) =:
1

λ2
L(0)

· f(T )
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12 Non local effects in superconductors

Figure 10: Temperature dependence of (λ(0)/λ(T ))2. Black: Temperature dependence accord-
ing to Eq.(16). Red: The two fluid ansatz. Blue: The extreme anomalous limit (see Eq.(19)).
Open symbols: The integral definition of λ based on Eq.(18) with parameters for Aluminum.

Now in the situation where h(z) is deviating from the exponential function, these different
definitions lead to different results! Therefore it is essential to define what one is referring to.
E.g. in the case of the extreme anomalous limit (see Eq.(4)), definition 1 gives something like

λea =
2√
3

1
Q

=
2√
3

(
4
3π

)1/3 (
λ2

Lξ0

)1/3 ' 0.8678
(
λ2

Lξ0

)1/3
,

definition 3 will lead to an undefined λ∞ and the only reasonable definition 2 gives

λ∞ =
1

hext

∫ ∞

0

dz h(z) =
[

3
(2π)2

]1/6 (
λ2

Lξ0

)1/3 ' 0.6508
(
λ2

Lξ0

)1/3
(19)

Interesting at this equation is that it shows that λ∞ has a very different temperature dependence
than λL. That the temperature dependence are indeed rather different can be seen from Fig.10.
For λint I chose parameters of Aluminum, if I rather would have used Lead the curve would
“shift” in the direction of λL. This shows that λ(T ) is not an universal curve, i.e. its details
depend on the actual material parameters.

In my analysis I used Eq.(12) and Eq.(15) in the limit q → 0 as a working
definition of λL(0). Furthermore the full equations mentioned here were the
basis to derive ξ0. In the case of the Pippard model ξ(T ) as in Eq.(14) was used
and a two fluid model temperature dependence of λP = λL(0)/

√
1− t4 with

t = T/Tc. The temperature dependence of the gap ∆(T ) was taken from Ref.
[10]. Since the temperature dependent strong coupling corrections are rather
small [9] they were not included in the fitting itself.

7 Niobium

7.1 Characterization of the films, Experimental Details

Rustem measured resistance as well as the magnetization of the niobium film. The samples he
measured were co–sputtered on the same substrate as the film we measured by LEµSR. The
results are shown in Fig.11.

— Andreas Suter – 19th March 2003—
PAUL SCHERRER INSTITUT



Non local effects in superconductors 13

Figure 11: Left graph: Resistance of a part of the niobium film with a Tc = 9.24(6) K. Right
graph: Magnetization measurement showing the onset of the Meissner effect at Tc = 9.2(1)K.

The electron mean free path `Nb was estimated by Elvezio (see [11] and Appendix B) to be in
the range of

`Nb(T = Tc) ≈ 300 . . . 500 nm,

i.e. our Nb sample is indeed in the extrem clean limit!
The oxide layer on top of the film an its thickness were determined by Rutherford backscat-

tering (RBS). The thickness of the NbO layer is 4.2(0.3)nm whereas the niobium film itself has
a thickness of 310(15)nm.

All the experiments were carried out in the “Mango cryostat”. The temperature calibration
for it was carried out by Rustem Khasanovs. This callibration was used and is shown in Fig.12.

Figure 12: Temperature calibration for the “Mango cryostat”.

7.2 Nb — Mean Value Reconstruction

As already mentioned in Sec.2 one method to reconstruct the penetration profile is the “Mean
Value Reconstruction” which I will present here in some detail.

There are two things one has to know: (i) How does the stopping distribution n(z) of the
muons looks like, and what is a sensible measure to define a implantation energy Eimpl versus
distance relation? (ii) How do we analyze the µSR spectra to get a working definition of a
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14 Non local effects in superconductors

characteristic field? If we can answer these two questions this automatically will lead us to a
way to reconstruct B(z).

Lets consider the point (i): The stopping distribution of the muons is calculated by trim.sp
[12]. That this monte-carlo code indeed gives a correct description of n(z) was checked exper-
imentally [13] and shows a rather nice correspondence. Some typical implantation profiles are
shown in Fig.13. The simulated sample consist of a 5nm NbO layer followed by a very thick
Nb one. The 5nm oxide layer was necessarily introduced since it changes especially the low
energy implantation profiles. In the real sample the oxide layer thickness was determined by
RBS as described in the previous section. A detailed analysis of the oxidation of niobium is
given in Ref.[14]. Now coming back to the question what is a reasonable length scale to de-
scribe the Eimpl versus z relation, there are two obvious possibilities, namely the peak value
position zP of n(z) or the mean value position 〈z〉. As already discussed in Secs.2, 3 the mean
value reconstruction is the more appropriate one in our case since the small systematic errors
introduced cannot mimic nonlocal effects! Therefore only this method was considered in the
following analysis.

Figure 13: Myon stopping distribution in Niobium calculated by trim.sp. On top a 5nm NbO
film was introduced in the calculation.

The top graph of Fig.14 shows Eimpl vs. 〈z〉 for this film which reveals an almost perfect
linear relationship.
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Figure 14: Left graph: Eimpl vs. 〈z〉. Right graph: The closed black symbols show the backscat-
tering probability of muons from the surface as function of Eimpl. The blue open symbols show
the stopping probability of the muons in the top layer of NbO.

Now I will come to point (ii), the estimate of the correct field. In Sec.2 the real 〈B〉
was calculated based on the knowledge of B(z). This, however, is not available in the real
experiment, since we do not know a priori the B(z) functional dependence of our measured
films, and hence another method is needed to get an estimate of 〈B〉. I proceeded as follows:
The reduced asymmetry was fitted by the following expression

a(t) = atot
BG exp

[
−1

2
(σBGt)2

]
cos(γµBBGt + φ) + (20)

aNb exp
[
−1

2
(σNbt)2

]
cos(γµBNbt + φ)

with aNb + atot
BG + aBS = 0.27 which is the maximal achievable asymmetry in our LEµSR

apparatus. All these terms are explained in Table 1. The different asymmetries as function of
Eimpl are shown in Fig.15. Two of these parameters are of special interest which is BNb which
is used for the “mean value reconstruction” of B(z) and the depolarization rate σNb(Eimpl)
which I am going to discuss only in Sec.8. All the fits were carried out using WKM. The whole
B(z) reconstruction extracted in this way is shown and discussed together with the integral
reconstruction in Sec.7.4.

Figure 15: Different asymmetries as function of Eimpl.
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16 Non local effects in superconductors

Parameter Description fit comment

α asymmetry in detector efficiency free

φ relative phase between spin and first detector. free

aBS

portion of muons which is backscattered from
the surface. Their asymmetry is assumed to
be lost from the spectrum.

fixed according to trim.sp

atot
BG = aPbO + aBG fixed according to trim.sp

σBG depolarization rate of the background free

BBG
background field assumed at the external field
Bext

fixed according to T > Tc

measurement

aNb portion of the muons stopping in Nb. fixed according to trim.sp

σNb depolarization rate of the Nb signal free

BNb
approximation of 〈B〉. I.e. one assumes a
Gaussian p(B).

free

aPbO
portion of the muons which stop in the PbO.
It is assumed that they experience Bext.

fixed according to trim.sp

aBG
≈ 10% of the muons do not hit the sample and
stop at a place where they experience Bext.

= 0.027

Table 1: Description of the different terms contributing to the measured spectrum according to
Eq.(20). The maximal achievable asymmetry in our setup is aNb + atot

BG + aBS = 0.27.

7.3 Nb — Integral Reconstruction

As described in Sec.5 the integral reconstruction does have the advantage that in principle a
single implantation energy can give the whole B(z) curve and hence reducing the measuring
time dramatically. Though, the analysis shows that one should have something like 106 counts
in order not to suffer too much from poor statistics. This is not always fulfilled for the niobium
data. The numerical algorithm used for the reconstruction are straight forward and were carried
out in matlab. The source of the small routines used is given in the Appendix D.

7.4 Nb — Results and Discussion

The fitting of B(z) was carried out for the Pippard formulaë Eqs.(11) & (12) and for the
weak coupling BCS formulaë Eqs.(11) & (15)8. The fitting program (non_local_sc.exe) is
written in C. The minuit fitting library from cern [15] was used, furthermore the FFT routine
from the nag library [16] was taken, since it is much better than the one from the cern libs
or the one from the “numerical recipes”. For each single run exists a file *_param.dat, e.g.
nb_T2_6K_E071_1789_param.dat, which shows the input parameters and the corresponding
output parameters. Fig.16 shows the low temperature reconstruction for niobium. Table 2
summarizes all the fitting results.

T (K) hP
ext (G) λP

0 (nm) hBCS
ext (G) λBCS

0 (nm)

2.95(1) 97(3) 28(3) 96(3) 26(3)

7.60(1) 98(3) 31(3) 98(3) 26(3)

Table 2: Results of the Niobium analysis. A fixed value of ξ0 = 39nm was used. Since the mean
free path ` À ξ0, it was set to ` = 1000nm.

8This is possible, since the strong coupling limit only leads to a renormalization as shown in Sec.6.4.
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Figure 16: Niobium: B versus z reconstruction.

Here quite a few comments are needed, which I loosely will discuss now. Very crudely speaking
the form of B(z) can characterized in the following way: The slope of the curve is dominated
by λ(T ) and therefore is a rather robust feature. The curvature, however, is given by the ratio
λ(T )/ξ0 =: κ and is only well defined if κ < 1, which is true for lead, but not for niobium.
Obviously it is going to get harder and harder to fit ξ0 for κ & 1, especially if the data are
noisy. Since the niobium data only have very limited statistics (≈ 300 kEvents per run) it was
not possible to fit ξ0 and hence it was fixed to its literature value ξ0 = 39nm (see Ref.[17]).

The resistivity measurements show that the mean free path ` À ξ0, I chose it to a very large
value of ` = 1000nm. As long as it is larger than ≈ ξ0 it is as if it is ∞ which justify the choice.

I am using the symbol λ0 to emphasize that it is a fitting parameter. It’s physical interpre-
tation is the following: λP

0 is the value extracted by assuming a two fluid model temperature
dependence of λ(T ) ∝ [1 − (T/Tc)4]−1/2 in the limit T → 0. λBCS

0 corresponds to the weak
coupling BCS λL = (µ0 ne2/m)−1/2. Both is not correct but since a compleat theory to analyze
the data is not readily at hand9 this was the best I could think off. In the case of lead this
will lead to interesting results and details like the strong coupling corrections are going to be
discussed there.

Lets look at the B(z) (Fig.16) reconstruction more closely. The first thing one notices is
that not all the integral reconstructed curves fall nicely on one single curve. The reason for
it is mainly the poor statistics. The lead data with higher statistics are not hampered in this
respect. Another important observation is that the mean value reconstruction (〈B〉WKM vs.
〈z〉trim.sp) and the integral reconstruction fit very well. This fits the estimate from Sec.2 very
nicely if one keeps in mind that we observe a little more than the first decade in B. Last but
not least, the B(z) shows a slight curvature as it should be.

9strong coupling corrections, details of the electron–phonon coupling, possible reduction of the gap at the
surface, . . . , see Ref.[18]
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18 Non local effects in superconductors

8 Lead

8.1 Characterization of the films

The magnetization and resistivity measurements were carried out by Rustem on co–sputtered
films.

Figure 17: Left graph: Resistance of a part of the 2001 lead film with a Tc = 7.21(1) K. Right
graph: Magnetization measurement (2001 Pb film) showing the onset of the Meissner effect at
Tc = 7.1(1)K.

The oxide layer on top of the film and its thickness were determined by RBS. The results
are collected in Table 3. The 2001 oxide layer thickness is definitely an upper limit since it was
measured only 3 to 4 month after beam time. I used an operational value of 16nm.

sample PbO layer (nm) Pb film (nm)

2001 23(2) 430(20)

2002 5.8(3) 1055(50)

Table 3: RBS values of the lead films. The 2001 film was only measured 3 to 4 month after
beam time and therefore the oxide layer thickness is an upper limit.

The mean free path ` was estimated by Elvezio Morenzoni (see [11] and Appendix B). The
estimated value range from

`Pb(T = Tc) ≈ 40 . . . 180 (nm)

The lower bound of `Pb(T = Tc) is uncomfortably small compared to ξ0. However, since we do
observe the clear deviations from the exponential behavior, ` must be larger than ξ0.

8.2 Pb — Mean Value Reconstruction

The mean value reconstruction was carried out in the same spirt as for niobium, hence details
should be checked there (see Sec.7). Some typical stopping profiles are shown in Fig.18, further
shows Fig.19 the mean values and backscattering probabilities versus the implantation energy.

There is one aspect which I haven’t discussed in the niobium section and this is the meaning
of the depolarization rate σPb (see Eq.(20)) from the WKM fit. The fitting results are shown
in Fig.20. The form of σPb(Eimpl) is always similar. It has a maximum at some intermediate
implantation energy and falls off to lower– and higher energies, respectively. Furthermore
σPb decreases for increasing temperature. All this can be easily understood in a simple static
picture. Lets first discuss the form of σPb(Eimpl): At small implantation energies the stopping
distribution of the muons is rather narrow and therefore the muons only sample a rather small
field range of the magnetic penetration profile, which results in a “small” depolarization rate.
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Figure 18: Myon stopping distribution in Lead calculated by trim.sp. On top a 8nm PbO film
was introduced in the calculation.

At high implantation energies on the other hand, the muon stopping distribution is smeared
out considerably but still having a maximum deeper in the sample where the magnetic fields are
rather “smallish”, hence also the depolarization rate. At intermediate energies there will be a
maximum field range sampled by the muons and therefore the maximum in σPb results. This can
actually modelled in a rather straight forward manner, which was done by Hubertus Luetkens.
His result is shown in Fig.21. Hubertus needed to add an offset σoffset = −0.29(µs)−1. The origin
of this offset can have different reasons, e.g. it could be that in the WKM fit the asymmetry
(which was fixed, see Sec.7) was chosen systematically too small. Another possibility to explain
this discrepancy is that WKM assumes a gaussian model for p(B) whereas the simulation does
not assume anything and estimates the real width/σPb which might by systematically a little
higher. Still, I would like to stress that this rather good agreement shows that the whole analysis
is self–consistent and settle.

The temperature dependence of σPb(Eimpl) is also understandable. The decrease of σPb for
increasing temperature stems from the fact that the penetration depth increases and therefore
the magnetic field distribution on the muon stopping length is getting shallower.

8.3 Pb — Integral Reconstruction

As already pointed out in Sec.7.3 this method works very good for & 1 MEvents, as I will
present in the next section.

8.4 Pb — Results and Discussion

The technical details of the analysis I already have described in Sec.7.4, hence I will focus
mainly on the physics here. To keep the section svelte, most of the h(z) reconstructed signals are
transferred to the Appendix C. The main results are compiled in Table 4. Fig.22 shows a typical
h(z) reconstruction. It shows the expected negative curvature, which is much more pronounced
than in the case of niobium. This is expected, since lead is a real type I superconductor,
i.e. κ = λL/ξ0 < 1. Again the mean value reconstruction and the integral reconstruction do
correspond within the errors, though the integral reconstructed signal with enough statistics
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20 Non local effects in superconductors

Figure 19: Left graph: Eimpl vs. 〈z〉. Right graph: The closed black symbols show the backscat-
tering probability of muons from the surface as function of Eimpl. The blue open symbols show
the stopping probability of the muons in the top layer of PbO.

Figure 20: Depolarization rates σPb versus Eimpl for different temperature. The left graph
shows the 2001 sample and the right graph the 2002 sample, respectively.

(here ≈ 2 MEvents) gives a much denser curve. The real data almost suggest an even stronger
curvature which the models cannot reproduce; this is something I do not understand. Also
the general trend as function of temperature is correct, since the h(z)’s for values T → Tc are
starting to loose the curvature more and more (see Appendix C).

One thing which seems to be strange is that λP,BCS
0 is temperature dependent (see Tab.4

and Fig.23). This is, however, not surprising. If one recalls the results from the Secs.6.2 &
6.5 it is obvious that neither the twofluid approximation temperature dependence (λ(T ) ∝
[1 − (T/Tc)4]−1/2) which went into the estimate of λP

0 nor the BCS one (Eq. (16)) for λBCS
0

will be correct and hence the λP,BCS
0 ’s will deviate from being constant. The deviation tells us

how wrong the assumed temperature dependence actually is. Fig.23 tells us that λ(T ) ∝ [1 −
(T/Tc)4]−1/2 is a rather good approximation. Since the penetration depth is almost temperature
independent for T . 0.4Tc, the low temperature values are the “correct” ones, meaning they
do coincide with the simple model parameters.

Now I will come to the discussion of the strong coupling corrections. As pointed out in
Sec.6.4 and at the end of Sec.6.5 the strong coupling corrections are not changing the structure
of the kernel and hence the form of h(z). Therefore it was possible to fit the parameters by
using the weak coupling limit and look for the corrections = renormalization afterwards. The
relation between the London penetration depth λL and λP,BCS

0 is according to Sec.6.4

λL ≈ λP,BCS
0 /

√
Z
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Figure 21: Depolarization rates σPb versus Eimpl reconstruction assuming only a static field
distribution.

T (K) hT>Tc
ext (G) hP

ext (G) λP
0 (nm) hBCS

ext (G) λBCS
0 (nm)

2001 — run XIII, ξ0 = 90 nm fixed.

2.85 91.5(5) 87(5) 61(3) 88(4) 58(3)

6.19 91.5(5) 88(5) 61(5) 88(5) 46(4)

6.76 91.5(5) 90(3) 58(3) 91(2) 41(2)

6.95 91.5(5) 91(3) 39(5) 92(3) 32(5)

2002 — run XIV, ξ0 = 90(5) nm

3.05 88.2(6) 86(5) 56(1) 86(5) 54(1)

3.8 88.2(6) 88(3) 60(2) 88(3) 55(2)

6.66 88.2(6) 90(2) 59(1) 92(2) 43(1)

3.05 198.6(4) 203(3) 57(3) 204(5) 54(3)

Table 4: Results of the Pb analysis. The mean free path was fixed to ` = 100 nm. This leads
to a κeff = λ0/ξ0 = 0.62(4). For further details see the text.

where Z = 1 + λe−p [9], with the electron–phonon mass renormalization constant λe−p ' 1.55
in the case of Pb. Using this formula results in a λL

λPb
L = 35(2) (nm)

The bare coherence length ξbare
0 = ~vF/(2∆(0)) is related to ξ0 by

ξbare
0 ≈ ξ0 · Z

which gives

ξbare
0

∣∣
Pb

= 230(13) (nm)
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22 Non local effects in superconductors

Figure 22: h(z) reconstruction for the 2002 sample — run XIV, T = 3.05 K. The dashed line
shows an exponential decay with the same λ as the theoretical Pippard and BCS model h(z).

Figure 23: λα
0 versus T/Tc (α = P, BCS). The curves are guides to the eyes. The red curve

is linked to the 2002 sample BCS values, whereas the black curve is linked to the 2001 sample
Pippard values.
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9 YBa2Cu3O7−δ — A Cross Check

In order to cross check the whole procedure of reconstructing h(z), fitting, etc. I reanalyzed our
old YBa2Cu3O7−δ (YBCO) data in the very same manner than the Nb and Pb data (1998 —
run XI, 1835 to 1844). Since YBCO is a strong type II superconductor, a perfect exponential
h(z) should result10 (see also Ref.[1]).

The T = 20 K results are presented in Fig.24 and indeed show only an exponential decay
without any sign of a curvature. Unfortunately we cannot observe a whole decade as for Nb
and Pb since the penetration length ≈ 3 . . . 4 times larger.

Figure 24: h(z) reconstruction of YBa2Cu3O7−δ for T = 20 K.

10 Summary

We measured a Niobium thin film (4.2(1.0)nm NbO / 310(15)nm) with a critical temperature
of Tc = 9.24(6)K (resistivity) and Tc = 9.2(1)K (SQUID), respectively. The mean free path is
` =??nm which shows that we are in the clean limit. We observe small but clear deviation from
the exponential magnetic screening in the Meissner–Ochsenfeld effect which are a clear sign of
nonlocal effects. The measured penetration depth is λNb

0 = 27(2)nm. The coherence length ξ0

needed to be fixed (not good enough statistics) to the literature value of ξNb
0 = 39nm, hence

yielding a κNb
eff = λNb

0 /ξNb
0 = 0.69(5).

We also measured two thin films of Lead (2001 sample — run XIII, 16(2)nm PbO /
430(20)nm Pb and 2002 sample — run XIV ??(?)nm PbO / ??(?)nm Pb) with a Tc = 7.21(1)K
(resistivity) and Tc = 7.1(1)K (SQUID), respectively. The mean free path ` & 100nm was
estimated which shows that this films are in the clean limit. We observed clear deviation from
the exponential magnetic screening in the Meissner–Ochsenfeld effect which are a clear sign of
nonlocal effects. Since we have some high statistic runs (2 MEvents), it was possible not only
to determine λPb

0 but also ξPb
0 , with the results (average of the two sample): λPb

0 = 55(1)nm
and ξPb

0 = 90(5)nm. Due to strong coupling corrections the London penetration depth λL

is different than λPb
0 . They are related by λL ≈ λPb

0 /
√

Z with Z = 2.55 for Pb, and hence

10assuming the film is thick enough so that the two sides are not interfere with each other.
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λL ' 34(1)nm. We further could show that the temperature dependence of λPb
0 (T ) is close to

the one in the two fluid approximation [1− (T/Tc)4]−1/2.
A cross check with YBa2Cu3O7−δ, a clear type II superconductor, was carried out. Here

the magnetic field penetration was perfect exponentially, as expected, proving that our method
to analyze the data is correct.
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A Strong Coupling Kernel K(q, ω → 0).

Since we are interested in h(z), an important question is how the kernel K(q, ω → 0) is going
to change. According to Ref. [7], the kernel has the form

K(q, ω → 0) =
6π

Λ
Re

{∑
n

2π

β

∆2
n

Zn(ω2
n + ∆2

n)(3/2)
F0(Sn)

}
(21)

Sn =
qvF

2Zn

√
ω2

n + ∆2
n

(22)

F0(x) =
1
x3

[(1 + x2) arctan(x)− x]

ωn = πkBT (2n + 1)
Zn ' 1 + λe−p

where I used Nam’s notation. This expression was derived in the Matsubara formalism (see
Refs. [3], [19]). If one want to compare it with Halbritter’s expressions a little bit of algebra
leads to

K(q, ω → 0) =
4π

Λ
Re

{
Λ
Λn

3
2

F0(qξn)
}

(23)

1
Λn

=
2an

Λ[1 + (2n + 1)2a2
n]3/2

· 1
Zn

(24)

ξn =
~vF

2∆n

√
1 + (2n + 1)2a2

n

· 1
Zn

.

If one assumes ∆n = ∆(T ), one sees that kernel has the very same structure, except that with
the renormalization

λL → λL

√
Z

F0(qξ) → F0(qξ/Z)

— Andreas Suter – 19th March 2003—
PAUL SCHERRER INSTITUT



26 Non local effects in superconductors

B Mean Free Path Estimates

Since it is important to have a realistic estimate of the mean free path of the electrons ` different
methods are compiled here, though no derivations are given.

B.1 Mean Free Path from Resistivity

In Ref.[20] it shown that the following equation holds

ρ · ` ·N2/3 =
(

3
8π

)1/3
h

e2
= 1.27 · 104 Ω, (25)

where ρ is the resistivity, ` the electron mean free path and N the electron density. This
equation is derived from a free electron approximation which is by far to crude for Pb and Nb.

Measured values for ρ · ` =: C [11] can be used to estimate ` from direct resistivity measure-
ments carried out by Rustem (see Secs. 8 and 7).

Example Pb: CPb ≈ 492 µΩ · cm · Å [11] and ρ(T = Tc + ε) ≈ 1.3 µΩ · cm (from Rustems
measurements) ⇒

`Pb(T = Tc + ε) ≈ 38 nm

B.2 Mean Free Path from Fermi-velocity

The Heisenberg uncertainty principle can also be used to estimate the electron mean free path `.
Assuming that the electrons are in thermal equilibrium with the lattice the following estimate
should hold

~
τ
' 2πkBT · λe−p. (26)

Together with τ ' `/〈vF〉, one gets

` ' ~〈vF〉
2πkBT · λe−p

(27)

For example this will lead, in the case of Pb, with 〈vF〉Pb ≈ 1.8·106 m/s [21], and λPb
e−p ' 1.55

[9], to

`Pb(T = Tc + ε) ≈ 180 nm (28)
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C Pb — all the h(z) reconstructed signals

Here all the h(z) reconstructed signals are given. For a detailed discussion the reader is refered
to Sec.8.4.

C.1 Pb — 2001 sample, run XIII

Figure 25: Sample 2001 — run XIII, T = 2.85 K.

Figure 26: Sample 2001 — run XIII, T = 6.19 K.
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Figure 27: Sample 2001 — run XIII, T = 6.76 K.
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C.2 Pb — 2002 sample, run XIV

Figure 28: Sample 2002 — run XIV, T = 3.05 K.

Figure 29: Sample 2002 — run XIV, T = 3.80 K.
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Figure 30: Sample 2002 — run XIV, T = 6.66 K.

Figure 31: Sample 2002 — run XIV, T = 3.00 K, hext = 198.6(4) G.
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D matlab — integral reconstruction routines

The integral reconstruction used to determine B(z) was carried out in matlab since it is very
convenient for this kind of tasks. The necessary routines are going to be listed here. For each
single run an integral reconstruction file exists, however I only give a single example here.

D.1 matlab — general routines used for the integral reconstruction

% reads a MAXENT output file

% SYNTAX: [B,pB] = read_maxent(name);

% ’name’ is the *.dat file from the maxent output.

function [B,pB] = read_maxent(name)

h=importdata(name);

B = h.data(:,1)*1e4; % fields in gauss

pB= h.data(:,2);

% read trim.sp data into matlab

% SYNTAX: [z,pz] = read_trimsp(name)

% ’name’ is the filename of the trim.sp *.rge file.

function [z,pz] = read_trimsp(name)

h=importdata(name);

z=h.data(:,1);

pz=h.data(:,2);

clear h;

% b_of_z.m

%

% evaluates B(z) starting from

%

% p(z) trim.sp

% and

% P(B) maxent

%

% the assumption is that B(z) is a monotonic function.

% This assumption is NOT always fulfilled!!!!!

%

% SYNTAX: [z,B]=b_of_z(z_in,pz,B_in,pB,tag)

% (z_in,pz) comes from trim.sp

% (B_in,pB) comes from maxent

% tag: 0 means case I, starting at z=0 ...

% 1 means case II, starting at z=infinity

function [z,B]=b_of_z(z_in,pz,B_in,pB,tag)

% the trim.sp and maxent input has to be properly normalized

% trim.sp

pz=pz/sum(pz); % i.e. \sum pz*dz = 1

% maxent

pB=pB/sum(pB); % i.e. \sum pB*dB = 1

% generate cumulative sums

if (tag==0) % case I

sum_pz=cumsum(pz); % sum_pz = int_0^x pz dz

sum_pB=ones(length(pB),1)-cumsum(pB); % sum_Bz = int_B^Bext pB dB

else % case II

sum_pz=cumsum(pz); % sum_pz = int_0^x pz dz

sum_pB=cumsum(pB); % sum_Bz = int_0^B pB dB

end;

z=z_in;

% get the correct B value for a given z

B=zeros(length(sum_pz),1); % B vector

for i=1:length(sum_pz)

if (tag==0) % case I

[a,b]=min(abs(sum_pB-sum_pz(i)));

else % case II
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[a,b]=min(abs(sum_pB-sum_pz(length(sum_pz)-i+1)));

end;

B(i)=B_in(b);

end;

D.2 matlab — integral reconstruction from the data

%-------------------------------------------------------------------

%

% Pb run XIV, 234 + 242, 2.7K(D2)

%

% load 5.2 keV run 0234+0242

[B,pB]=read_maxent(’./maxent/lead/lem02_234+242_tdcut.dat’);

% subtract background

pBc=pB; ss=2135; ee=2646;

pBc(ss:ee)=-abs((pB(ss)-pB(ee))/(B(ss)-B(ee)))*(B(ss:ee)-B(ss))+pB(ss);

% load trimsp 5.2 keV

[z,pz]=read_trimsp(’./stoping_profiles/trimsp/pb08e052.rge’);

% solve the integral equation

type = 0; [z_052,B_052]=b_of_z(z,pz,B,pB,type); first_good = 9;

last_good = length(z_052)-25;

%

% exponential fit

param=[90, 300]; % [B0, lambda]

z_oxid=50;

[Bfit,param,err,chis]=fit(z_052(first_good:last_good)-z_oxid,B_052(first_good:last_good),’expo’,param,z_oxid);

%

% mapping trim.sp -> maxent assuming exp-modell

Bmap =expo(param,z_oxid,z); pBmap=pz./(Bmap/param(2));

%

% trim.sp output

subplot(2,2,2); plot(z,pz,’o’); xlabel(’z (A)’); ylabel(’n(z)’);

title(’pb film , T=2.7K(D2), E_{impl}=5.2keV, run0234+242’);

%

% maxent output

subplot(2,2,4); plot(B,pB,’o’); hold on; plot(B,pBc,’r+’);

n_pBc=sum(pBc)*abs(B(2)-B(1)); dBmap=diff(Bmap);

dBmap(length(Bmap))=dBmap(length(Bmap)-1);

n_pBmap=sum(pBmap.*abs(dBmap));

plot(Bmap,pBmap/n_pBmap*n_pBc,’k’); xlabel(’B (G)’);

ylabel(’p(B)’); title(’run 0234+242’);

%

% B(z) result

zmean=[183,258,323,416,523,735,864,1066,1230,1430]-z_oxid;

Bmean=[76.4,74.5,65.7,57.9,46.6,33.8,24.6,17.6,12.9,10.1];

subplot(1,2,1);

semilogy(z_052(first_good:last_good)-z_oxid,B_052(first_good:last_good),’ro’);

hold on semilogy(z_052(first_good:last_good)-z_oxid,Bfit,’k’);

semilogy(zmean, Bmean, ’b*’); xlabel(’z (A)’); ylabel(’B (G)’); if

(type == 0)

str = ’type = 0, i.e. starting at z=0’;

else

str = ’type = 1, i.e. starting at z=infinity’;

end; title([’run 0234+242 - ’, str]);

gtext([’B_{ext}=’,num2str(param(1)),’\pm’,num2str(abs(err(1,1)-err(1,2))),’(G)’]);

gtext([’\lambda_{exp}=’,num2str(param(2)),’\pm’,num2str(abs(err(2,1)-err(2,2))),’(A)’]);

gtext([’z_{oxid}=’,num2str(z_oxid),’ (A)’]);

gtext(date);

%

% write h vs z into a data file

fid=fopen(’pb_T2_7K_E052_0234+242.dat’,’w’);

fprintf(fid, ’%% pb_T2_7K_E052_0234+242.dat\n’);

fprintf(fid, ’%% thin film of lead, T=2.7K(D2), E_impl=5.2 keV\n’);

fprintf(fid, ’%%\n’);

fprintf(fid, ’%% run XIV 2002 - 0234+242\n’);

fprintf(fid, ’%% T=3.0K\n’);

if (type==0)

str=’0’;

else
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str=’infinity’;

end;

fprintf(fid, ’%% reconstruction type = %d, i.e. starting from z=%s.\n’, type, str);

fprintf(fid, ’%%\n’);

fprintf(fid, ’%% Andreas Suter, %s\n’, date);

fprintf(fid, ’%%\n’);

fprintf(fid, ’%% z (nm), B (G)\n’);

for i=first_good:last_good

fprintf(fid, ’%f, %f\n’, (z_052(i)-z_oxid)/10, B_052(i));

end;

fprintf(fid, ’%% end of data\n’);

fclose(fid);
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