1 Rigorous test of Tanya Risemans maximum entropy analysis package

Wednesday, March 7, 2001

I am starting with a rigorous test of Tanya Risemans maximum entropy analysis package, which is installed on

'/afs/psi.ch/project/lem/max_entropy'

1.1 Step – matlab

I am producing synthetic data with matlab (program: synt_his_wkm.min

'/afs/psi.ch/users/s/suter_a/matlab'). It produces the WKM output format, which can directly be read by max0103.

The general formula for the input signal is:

$$s_i(t) = N_0 \exp(-t/\tau_u) [1 + A_i f_i(t)] + B$$

where the index i labels the corresponding detector. In the LE μ SR experiment there are maximal 4 detectors. $\tau_{\mu} = 2.2\mu$ s. The gyromagnetic ratio of the Muon is $\gamma_{\mu} = 2\pi \cdot 135.697 \text{MHz/T}$.

1.1.1 pure cosine

The signal parameters are as following:

$\overline{N_0}$	10^{3}
A_i	0.3
$f_i(t)$	$\cos(\omega t + \phi_i)$
ω	$2Mc/s \Rightarrow 23.457G$
ϕ_i	$(0, -\pi/2, \pi, \pi/2)$
B	0
binning	10^4 bins, 1 ns raster

The following parameters were entered:

Use time binning convolution	no
Background signal asymmetry	0.0
Remove group	no
Time range and binning size	$[0, 10, 0.001] \ \mu \mathrm{s}$
Start variable binning	$20~\mu\mathrm{s}$
Power of generalized gaussian for var binning	2
Decay time of gen gaussian for var binning (us)	100
Sigma apodization time (us)	10^{14}
Sigma looseness factor	1
Test criterion (precision)	0.001
Do you want to keep the phases fixed	yes
Power for number of points	2^{15}
Min and max fields (in Telsa)	[0, 0.005]
Default level twiddle factor	1
Fit using sqrt(theory) as the errors?	yes

The following error message was produced:

Bad! $Chi^2 = 1.3872683$ is NOT 1 within tolerance of 0.00499999989

Figure 1: Result for pure cosine input. Also shown expected broadening due to finite observation window of 10 μ s and expected peak field of 23.457 G. Top two: Binning 2^{15} . Bottom two: Binning 2^{16}

Use time binning convolution	no
Background signal asymmetry	0.0
Remove group	no
Time range and binning size	$[0, 10, 0.001] \ \mu \mathrm{s}$
Start variable binning	$20~\mu\mathrm{s}$
Power of generalized gaussian for var binning	2
Decay time of gen gaussian for var binning (us)	100
Sigma apodization time (us)	10^{14}
Sigma looseness factor	1
Test criterion (precision)	0.001
Do you want to keep the phases fixed	yes
Power for number of points	2^{16}
Min and max fields (in Telsa)	[0, 0.005]
Default level twiddle factor	1
Fit using sqrt(theory) as the errors?	yes

No error message this time.

1.1.2 Two cosine close in frequency

The signal parameters are as following:

$\overline{N_0}$	10^{3}
A_i	0.3
$f_i(t)$	$0.7\cos(\omega t + \phi_i) + 0.3\cos(1.3\omega t + \phi_i + e/\sqrt{7})$
ω	$2Mc/s \Rightarrow 23.457G$
ϕ_i	$(0,-\pi/2,\pi,\pi/2)$
B	0
binning	10^4 bins, 1 ns raster

The following parameters were entered:

Use time binning convolution	no
Background signal asymmetry	0.0
Remove group	no
Time range and binning size	$[0, 10, 0.001]~\mu \mathrm{s}$
Start variable binning	$20~\mu\mathrm{s}$
Power of generalized gaussian for var binning	2
Decay time of gen gaussian for var binning (us)	100
Sigma apodization time (us)	10^{14}
Sigma looseness factor	1
Test criterion (precision)	0.001
Do you want to keep the phases fixed	yes
Power for number of points	2^{15}
Min and max fields (in Telsa)	[0, 0.005]
Default level twiddle factor	1
Fit using sqrt(theory) as the errors?	yes

1.1.3 $\sin(x)/x$ test

Figure 2: Two cosine close in field. Bullets: Result from max0103. Stars: Theoretical signal. Theoretical expected ratio between the amplitudes is 3/7 = 0.429, whereas the integrated peak amplitude from the output of max0103 gives 0.395, which is not too bad.

$\overline{N_0}$	10^{3}
A_i	0.3
$f_i(t)$	$\sin(\omega t + \phi_i)/t$
ω	$2Mc/s \Rightarrow 23.457G$
ϕ_i	$(0, -\pi/2, \pi, \pi/2)$
B	0
binning	10^4 bins, 1 ns raster

The following parameters were entered:

Use time binning convolution	no
Background signal asymmetry	0.0
Remove group	no
Time range and binning size	$[0, 10, 0.001]~\mu \mathrm{s}$
Start variable binning	$20~\mu\mathrm{s}$
Power of generalized gaussian for var binning	2
Decay time of gen gaussian for var binning (us)	100
Sigma apodization time (us)	10^{14}
Sigma looseness factor	1
Test criterion (precision)	0.001
Do you want to keep the phases fixed	yes
Power for number of points	2^{15}
Min and max fields (in Telsa)	[0, 0.005]
Default level twiddle factor	1
Fit using sqrt(theory) as the errors?	yes

1.1.4 $\sin(ax)/x - \sin(bx)/x \implies \text{shifted rectangular in field}$

Figure 3: Result for $\sin(t)/t$ with the theoretical cut-off field of 23.457 G.

N_0	$(10^3, 0.25 \cdot 10^2)$
A_i	0.3
$f_i(t)$	$\left[\sin(7\omega t + \phi_i) - \sin(3\omega t + \phi_i)\right]/(t4\omega)$
ω	$2Mc/s \Rightarrow 23.457G$
ϕ_i	$(0,-\pi/2,\pi,\pi/2)$
B	0
binning	10^4 bins, 1 ns raster
sample with noise	Bad $\chi^2 = 1.3939$, allowed 1 ± 0.005

The following parameters were entered:

Use time binning convolution	no
Background signal asymmetry	0.0
Remove group	no
Time range and binning size	$([0, 5, 0.005] \mu s, [0, 4, 0.005] \mu s)$
Start variable binning	$20~\mu\mathrm{s}$
Power of generalized gaussian for var binning	2
Decay time of gen gaussian for var binning (us)	100
Sigma apodization time (us)	10^{14}
Sigma looseness factor	1
Test criterion (precision)	0.001
Do you want to keep the phases fixed	yes
Power for number of points	$(2^{12}, 2^{12})$
Min and max fields (in Telsa)	[0, 0.03]
Default level twiddle factor	1
Fit using sqrt(theory) as the errors?	yes

1.1.5 Two pure cosine plus a rectangular in field

Figure 4: "Shifted $\sin(x)/x$ ". Top: without noise. Bottom: Noise, # of counts $\approx 2 \cdot 10^5$.

Figure 5: Two pure cosine plus "shifted $\sin(x)/x$ ". Amplitude strongly renormalized! Amplitudes do NOT match.

$\overline{N_0}$	10^{3}
A_i	0.3
$f_i(t)$	$0.3\cos(\omega t + \phi_i) + 0.2\cos(15\omega t + \phi_i + e/\sqrt{7}) + 0.5\left[\sin(7\omega t + \phi_i) - \sin(3\omega t + \phi_i)\right]/(t4\omega)$
ω	$2\mathrm{Mc/s} \Rightarrow 23.457\mathrm{G}$
ϕ_i	$(0,-\pi/2,\pi,\pi/2)$
B	0
binning	10 ⁴ bins, 1 ns raster

Use time binning convolution	no
Background signal asymmetry	0.0
Remove group	no
Time range and binning size	$[0, 10, 0.001] \ \mu \mathrm{s}$
Start variable binning	$20~\mu \mathrm{s}$
Power of generalized gaussian for var binning	2
Decay time of gen gaussian for var binning (us)	100
Sigma apodization time (us)	10^{14}
Sigma looseness factor	1
Test criterion (precision)	0.001
Do you want to keep the phases fixed	yes
Power for number of points	2^{15}
Min and max fields (in Telsa)	[0, 0.06]
Default level twiddle factor	1
Fit using sqrt(theory) as the errors?	yes

1.1.6 Lorentz and Delta

The signal parameters are as following:

N_0	10^3
A_i	0.3
$f_i(t)$	$0.9\cos(7\omega t + \phi_i)\exp(-\omega t) + 0.1\cos(\alpha\omega t + \phi_i)$
ω	$2Mc/s \Rightarrow 23.457G$
ϕ_i	$(0,-\pi/2,\pi,\pi/2)$
α	(7.123, 7.5, 8.5) three different sets of data
B	0
binning	10 ⁴ bins, 1 ns raster

The following parameters were entered:

Use time binning convolution	no
Background signal asymmetry	0.0
Remove group	no
Time range and binning size	$[0, 10, 0.005] \mu s$
Start variable binning	$20~\mu\mathrm{s}$
Power of generalized gaussian for var binning	2
Decay time of gen gaussian for var binning (us)	100
Sigma apodization time (us)	10^{14}
Sigma looseness factor	1
Test criterion (precision)	0.001
Do you want to keep the phases fixed	yes
Power for number of points	2^{13}
Min and max fields (in Telsa)	[0, 0.03]
Default level twiddle factor	1
Fit using sqrt(theory) as the errors?	yes

1.1.7 Lorentz

The signal parameters are as following:

N_0	10^{3}
A_i	0.3
$f_i(t)$	$\cos(7\omega t + \phi_i)\exp(-\omega t)$
ω	$2Mc/s \Rightarrow 23.457G$
ϕ_i	$(0, -\pi/2, \pi, \pi/2)$
B	0
binning	10 ⁴ bins, 1 ns raster

The Fourier–transform of $f_i(t)$

$$\cos(\omega_1 t)e^{-at} \Longrightarrow N \frac{a}{a^2 + (\omega - \omega_1)^2} + \frac{a}{a^2 + (\omega + \omega_1)^2}$$

and N is a constant which depends on the definition of the Fourier–transform. The following parameters were entered:

Figure 6: Lorentz plus Delta.

Figure 7: Lorentz?

Use time binning convolution	no
Background signal asymmetry	0.0
Remove group	no
Time range and binning size	$[0, 10, 0.005] \; \mu \mathrm{s}$
Start variable binning	$20~\mu\mathrm{s}$
Power of generalized gaussian for var binning	2
Decay time of gen gaussian for var binning (us)	100
Sigma apodization time (us)	10^{14}
Sigma looseness factor	1
Test criterion (precision)	0.001
Do you want to keep the phases fixed	yes
Power for number of points	2^{13}
Min and max fields (in Telsa)	[0, 0.035]
Default level twiddle factor	1
Fit using sqrt(theory) as the errors?	yes

1.1.8 Gauss

The signal parameters are as following:

N_0	10^{3}
A_i	0.3
$f_i(t)$	$\cos(9\omega t + \phi_i)\exp(-\omega^2 t^2)$
ω	$2Mc/s \Rightarrow 23.457G$
ϕ_i	$(0,-\pi/2,\pi,\pi/2)$
B	0
binning	10 ⁴ bins, 1 ns raster

Figure 8: Gauss

Use time binning convolution	no
Background signal asymmetry	0.0
Remove group	no
Time range and binning size	$[0, 3, 0.005]~\mu \mathrm{s}$
Start variable binning	$20~\mu\mathrm{s}$
Power of generalized gaussian for var binning	2
Decay time of gen gaussian for var binning (us)	100
Sigma apodization time (us)	10^{14}
Sigma looseness factor	1
Test criterion (precision)	0.001
Do you want to keep the phases fixed	yes
Power for number of points	2^{12}
Min and max fields (in Telsa)	[0, 0.05]
Default level twiddle factor	1
Fit using sqrt(theory) as the errors?	yes

1.1.9 Two Gauss

The signal parameters are as following:

N_0	10^3
A_i	0.3
$f_i(t)$	$0.3\cos(9\omega t + \phi_i)\exp(-\omega^2 t^2) + 0.7\cos(11\omega t + \phi_i)\exp(-0.1\omega^2 t^2)$
ω	$2 \text{Mc/s} \Rightarrow 23.457 \text{G}$
ϕ_i	$(0,-\pi/2,\pi,\pi/2)$
B	0
binning	10 ⁴ bins, 1 ns raster

Figure 9: Two Gauss

Use time binning convolution	no
Background signal asymmetry	0.0
Remove group	no
Time range and binning size	$[0, 3, 0.01] \; \mu \mathrm{s}$
Start variable binning	$20~\mu\mathrm{s}$
Power of generalized gaussian for var binning	2
Decay time of gen gaussian for var binning (us)	100
Sigma apodization time (us)	10^{14}
Sigma looseness factor	1
Test criterion (precision)	0.001
Do you want to keep the phases fixed	yes
Power for number of points	2^{11}
Min and max fields (in Telsa)	[0, 0.04]
Default level twiddle factor	1
Fit using sqrt(theory) as the errors?	yes

1.1.10 Two Gauss

N_0	10^{3}
A_i	0.3
$f_i(t)$	$0.3\cos(9\omega t + \phi_i)\exp(-\omega^2 t^2) + 0.7\cos(11\omega t + \phi_i)\exp(-0.1\omega^2 t^2)$
ω	$2 \text{Mc/s} \Rightarrow 23.457 \text{G}$
ϕ_i	$(0,-\pi/2,\pi,\pi/2)$
B	0
binning	10^4 bins, 1 ns raster
(1) # of counts in detector (1–4)	2179052,2161835,2177693,2188862
(2) # of counts in detector (1–4)	217810, 215534, 217572, 219396
(3) # of counts in detector (1–4)	53948,53519,54156,54730

The following parameters were entered:

Use time binning convolution	no
Background signal asymmetry	0.0
Remove group	no
Time range and binning size	(1) $[0, 4, 0.01] \mu s$,
	(2) $[0, 3.5, 0.005] \mu s$
	(3) $[0, 3, 0.001] \mu s$
Start variable binning	$20~\mu\mathrm{s}$
Power of generalized gaussian for var binning	2
Decay time of gen gaussian for var binning (us)	100
Sigma apodization time (us)	10^{11}
Sigma looseness factor	1
Test criterion (precision)	0.001
Do you want to keep the phases fixed	yes
Power for number of points	$(1) \ 2^{11}, \ (2) \ 2^{12}, \ (3) \ 2^{13}$
Min and max fields (in Telsa)	[0, 0.035]
Default level twiddle factor	1
Fit using sqrt(theory) as the errors?	yes

1.1.11 Lorentz plus Delta with bad statistics

The signal parameters are as following:

$\overline{N_0}$	10^{3}
A_i	0.3
$f_i(t)$	$0.9\cos(7\omega t + \phi_i)\exp(-\omega t) + 0.1\cos(7.5\omega t + \phi_i)$
ω	$2Mc/s \Rightarrow 23.457G$
ϕ_i	$(0, -\pi/2, \pi, \pi/2)$
B	0
binning	10 ⁴ bins, 1 ns raster

Use time binning convolution	no
Background signal asymmetry	0.0
Remove group	no
Time range and binning size	$[0, 9, 0.001]~\mu{ m s}$
Start variable binning	$20~\mu\mathrm{s}$
Power of generalized gaussian for var binning	2
Decay time of gen gaussian for var binning (us)	100
Sigma apodization time (us)	10^{16}
Sigma looseness factor	1
Test criterion (precision)	0.001
Do you want to keep the phases fixed	yes
Power for number of points	2^{16}
Min and max fields (in Telsa)	[0, 0.03]
Default level twiddle factor	1
Fit using sqrt(theory) as the errors?	yes
$Bad \chi^2 = 1.0658$	allowed would be 1 ± 0.00527

Figure 10: Two Gauss — Top: $\approx 8.7 \cdot 10^6$ total counts, Middle: $\approx 8.7 \cdot 10^5$ total counts, Bottom: $\approx 2.1 \cdot 10^5$ total counts

Figure 11: Lorentz plus Delta. Total # of counts $\approx 2.2 \cdot 10^4$

1.1.12 Saw Tooth

A saw tooth signal, given as

$$F(\omega) = \begin{cases} a\omega + b, & \omega \in [-b/a, c] \\ 0, & \text{else} \end{cases}$$

There are three signals calculated with different noise levels. The first without any noise. The other two with their corresponding Poisson noise. The signal parameters are as following:

$\overline{N_0}$	$(10^3, 10^3, 0.25 \cdot 10^2)$
A_i	0.3
$f_i(t)$	$\underline{a[\cos(ct+\phi_i)-\cos(bt/a+\phi_i)]+(b+ac)t\sin(ct+\phi_i)}$
• • • •	t^2
(a,b,c)	$(0.1, -5a\omega, 9\omega)$
ω	$2 \text{Mc/s} \Rightarrow 23.457 \text{G}$
ϕ_i	$(0,-\pi/2,\pi,\pi/2)$
B	0
binning	10^4 bins, 1 ns raster

Use time binning convolution	no
Background signal asymmetry	0.0
Remove group	no
Time range and binning size	$([0, 5, 0.005] \mu s, [0, 5, 0.005] \mu s, [0, 5, 0.01] \mu s)$
Start variable binning	$20~\mu\mathrm{s}$
Power of generalized gaussian for var binning	2
Decay time of gen gaussian for var binning (us)	100
Sigma apodization time (us)	10^{15}
Sigma looseness factor	1
Test criterion (precision)	0.001
Do you want to keep the phases fixed	yes
Power for number of points	$(10^{12}, 10^{12}, 10^{11})$
Min and max fields (in Telsa)	[0, 0.03]
Default level twiddle factor	1
Fit using sqrt(theory) as the errors?	yes

Figure 12: Saw tooth. Top: No noise. Middle: Total # of counts $\approx 8 \cdot 10^6$. Bottom: Total # of counts $\approx 2 \cdot 10^5$.